cgal/Packages/Spatial_searching/include/CGAL/Orthogonal_standard_search.h

239 lines
6.9 KiB
C++
Executable File

// ======================================================================
//
// Copyright (c) 2002 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Orthogonal_standard_search.h
// package : ASPAS
// revision : 1.4
// revision_date : 2002/16/08
// authors : Hans Tangelder (<hanst@cs.uu.nl>)
// maintainer : Hans Tangelder (<hanst@cs.uu.nl>)
// coordinator : Utrecht University
//
// ======================================================================
#ifndef ORTHOGONAL_STANDARD_SEARCH_H
#define ORTHOGONAL_STANDARD_SEARCH_H
#include <cstring>
#include <list>
#include <queue>
#include <memory>
#include <CGAL/Kd_tree_node.h>
#include <CGAL/Kd_tree_traits_point.h>
#include <CGAL/Weighted_Minkowski_distance.h>
namespace CGAL {
template <class Traits, class Query_item, class Distance>
class Orthogonal_standard_search {
public:
typedef typename Traits::Item Item;
typedef typename Traits::NT NT;
typedef std::pair<Item*,NT> Item_with_distance;
typedef Kd_tree_node<Traits> Node;
typedef Kd_tree<Traits> Tree;
//private:
typedef Item** Item_iterator;
typedef Kd_tree_rectangle<NT> Rectangle;
private:
int number_of_internal_nodes_visited;
int number_of_leaf_nodes_visited;
int number_of_items_visited;
bool search_nearest;
NT multiplication_factor;
Query_item* query_object;
int total_item_number;
NT distance_to_root;
int dim;
typedef std::list<Item_with_distance> NN_list;
NN_list l;
int max_k;
int actual_k;
Distance* distance_instance;
inline bool branch(NT distance) {
if (actual_k<max_k) return true;
else
if (search_nearest) return ( distance < l.rbegin()->second * multiplication_factor );
else return ( multiplication_factor * distance > l.begin()->second );
};
inline void insert(Item* I, NT dist) {
bool insert;
if (actual_k<max_k) insert=true;
else
if (search_nearest) insert=( dist < l.rbegin()->second );
else insert=(dist > l.begin()->second);
if (insert) {
actual_k++;
typename NN_list::iterator it=l.begin();
for (; (it != l.end()); ++it) { if (dist < it->second) break;}
Item_with_distance NN_Candidate(I,dist);
l.insert(it,NN_Candidate);
if (actual_k > max_k) {
actual_k--;
if (search_nearest) l.pop_back();
else l.pop_front();
};
}
};
public:
template<class OutputIterator>
OutputIterator the_k_neighbours(OutputIterator res)
{
typename NN_list::iterator it=l.begin();
for (; it != l.end(); it++) { *res= *it; res++; }
return res;
}
// constructor
Orthogonal_standard_search(Tree& tree, Query_item& q,
Distance& d, int k, NT Eps, bool Search_nearest=true) {
distance_instance=&d;
multiplication_factor=
distance_instance->transformed_distance(1.0+Eps);
max_k=k;
actual_k=0;
search_nearest = Search_nearest;
if (search_nearest)
distance_to_root=
distance_instance->min_distance_to_queryitem(q,
*(tree.bounding_box()));
else
distance_to_root=
distance_instance->max_distance_to_queryitem(q,
*(tree.bounding_box()));
query_object = &q;
dim=query_object->dimension();
total_item_number=tree.item_number();
number_of_leaf_nodes_visited=0;
number_of_internal_nodes_visited=0;
number_of_items_visited=0;
compute_neighbours_orthogonally(tree.root(), distance_to_root);
}
// Print statistics of the standard search process.
void statistics () {
std::cout << "Standard search statistics:" << std::endl;
std::cout << "Number of internal nodes visited:" << number_of_internal_nodes_visited << std::endl;
std::cout << "Number of leaf nodes visited:" << number_of_leaf_nodes_visited << std::endl;
std::cout << "Number of items visited:" << number_of_items_visited << std::endl;
}
// destructor
~Orthogonal_standard_search() {
l.clear();
};
private:
void compute_neighbours_orthogonally(Node* N, NT rd) {
if (!(N->is_leaf())) {
number_of_internal_nodes_visited++;
int new_cut_dim=N->separator()->cutting_dimension();
NT old_off, new_rd;
NT new_off =
(*query_object)[new_cut_dim] -
N->separator()->cutting_value();
if ( ((new_off < NT(0.0)) && (search_nearest)) ||
(( new_off >= NT(0.0)) && (!search_nearest)) ) {
compute_neighbours_orthogonally(N->lower(),rd);
if (search_nearest) {
old_off= (*query_object)[new_cut_dim]-
N->low_value();
if (old_off>NT(0.0)) old_off=NT(0.0);
}
else
{
old_off= (*query_object)[new_cut_dim] - N->high_value();
if (old_off<NT(0.0)) old_off=NT(0.0);
}
new_rd=
distance_instance->
new_distance(rd,old_off,new_off,new_cut_dim);
if (branch(new_rd)) compute_neighbours_orthogonally(N->upper(),new_rd);
}
else { // compute new distance
compute_neighbours_orthogonally(N->upper(),rd);
if (search_nearest) {
old_off= N->high_value() - (*query_object)[new_cut_dim];
// if (old_off>NT(0.0)) old_off=NT(0.0);
}
else
{
old_off= N->low_value() - (*query_object)[new_cut_dim];
// if (old_off<NT(0.0)) old_off=NT(0.0);
}
new_rd=distance_instance->
new_distance(rd,old_off,new_off,new_cut_dim);
if (branch(new_rd)) compute_neighbours_orthogonally(N->lower(),new_rd);
}
}
else
{
// n is a leaf
number_of_leaf_nodes_visited++;
if (N->size() > 0)
for (Item_iterator it=N->begin(); it != N->end(); it++) {
number_of_items_visited++;
NT distance_to_query_object=
distance_instance->
distance(*query_object,**it);
insert(*it,distance_to_query_object);
}
}
}
}; // class
} // namespace CGAL
#endif // ORTHOGONAL_STANDARD_SEARCH