cgal/Kinetic_space_partition/include/CGAL/KSP/utils.h

311 lines
8.3 KiB
C++

// Copyright (c) 2020 GeometryFactory SARL (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Simon Giraudot, Dmitry Anisimov
#ifndef CGAL_KSP_UTILS_H
#define CGAL_KSP_UTILS_H
#include <CGAL/license/Kinetic_space_partition.h>
// STL includes.
#include <set>
#include <cmath>
#include <array>
#include <string>
#include <sstream>
#include <functional>
#include <fstream>
#include <vector>
#include <deque>
#include <queue>
#include <map>
// CGAL includes.
#include <CGAL/Bbox_3.h>
#include <CGAL/centroid.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/Iterator_range.h>
#include <CGAL/convex_hull_2.h>
#include <CGAL/number_utils.h>
#include <CGAL/assertions.h>
#include <CGAL/Cartesian_converter.h>
#include <CGAL/linear_least_squares_fitting_2.h>
#include <CGAL/linear_least_squares_fitting_3.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_2_algorithms.h>
// Boost includes.
#include <boost/iterator/function_output_iterator.hpp>
namespace CGAL {
namespace KSP {
namespace internal {
#ifdef DOXYGEN_RUNNING
#else
// Convert point to string.
template<typename Point_d>
const std::string to_string(const Point_d& p) {
std::ostringstream oss;
oss.precision(20);
oss << p;
return oss.str();
}
// Distance between two points.
template<typename Point_d>
decltype(auto) distance(const Point_d& p, const Point_d& q) {
using Traits = typename Kernel_traits<Point_d>::Kernel;
using FT = typename Traits::FT;
const FT sq_dist = CGAL::squared_distance(p, q);
return static_cast<FT>(CGAL::sqrt(CGAL::to_double(sq_dist)));
}
// Project 3D point onto 2D plane.
template<typename Point_3>
typename Kernel_traits<Point_3>::Kernel::Point_2
point_2_from_point_3(const Point_3& point_3) {
return typename Kernel_traits<Point_3>::Kernel::Point_2(
point_3.x(), point_3.y());
}
// Get 3D point from a 2D point.
template<typename Point_2>
typename Kernel_traits<Point_2>::Kernel::Point_3
point_3_from_point_2(const Point_2& point_2) {
return typename Kernel_traits<Point_2>::Kernel::Point_3(
point_2.x(), point_2.y(), typename Kernel_traits<Point_2>::Kernel::FT(0));
}
// Normalize vector.
template<typename Vector_d>
inline const Vector_d normalize(const Vector_d& v) {
using Traits = typename Kernel_traits<Vector_d>::Kernel;
using FT = typename Traits::FT;
const FT dot_product = CGAL::abs(v * v);
//CGAL_assertion(dot_product != FT(0));
return v / static_cast<FT>(CGAL::sqrt(CGAL::to_double(dot_product)));
}
// Intersections. Used only in the 2D version.
// For the 3D version, see conversions.h!
template<typename Type1, typename Type2, typename ResultType>
inline bool intersection(
const Type1& t1, const Type2& t2, ResultType& result) {
const auto inter = intersection(t1, t2);
if (!inter) return false;
if (CGAL::assign(result, inter))
return true;
return false;
}
template<typename ResultType, typename Type1, typename Type2>
inline const ResultType intersection(const Type1& t1, const Type2& t2) {
ResultType out;
CGAL_assertion_code(const bool is_intersection_found =) intersection(t1, t2, out);
CGAL_assertion(is_intersection_found);
return out;
}
// Get boundary points from a set of points.
template<typename Point_2, typename Line_2>
void boundary_points_on_line_2(
const std::vector<Point_2>& input_range,
const std::vector<std::size_t>& indices,
const Line_2& line, Point_2& p, Point_2& q) {
using Traits = typename Kernel_traits<Point_2>::Kernel;
using FT = typename Traits::FT;
using Vector_2 = typename Traits::Vector_2;
FT min_proj_value = (std::numeric_limits<FT>::max)();
FT max_proj_value = -min_proj_value;
const auto ref_vector = line.to_vector();
const auto& ref_point = input_range[indices.front()];
for (const std::size_t index : indices) {
const auto& query = input_range[index];
const auto point = line.projection(query);
const Vector_2 curr_vector(ref_point, point);
const FT value = CGAL::scalar_product(curr_vector, ref_vector);
if (value < min_proj_value) {
min_proj_value = value;
p = point;
}
if (value > max_proj_value) {
max_proj_value = value;
q = point;
}
}
}
// Angles.
// Converts radians to degrees.
template<typename FT>
const FT degrees_2(const FT angle_rad) {
return angle_rad * FT(180) / static_cast<FT>(CGAL_PI);
}
// Computes an angle in degrees between two directions.
template<typename Direction_2>
const typename Kernel_traits<Direction_2>::Kernel::FT
compute_angle_2(const Direction_2& dir1, const Direction_2& dir2) {
using Traits = typename Kernel_traits<Direction_2>::Kernel;
using FT = typename Traits::FT;
const auto v1 = dir2.to_vector();
const auto v2 = -dir1.to_vector();
const FT det = CGAL::determinant(v1, v2);
const FT dot = CGAL::scalar_product(v1, v2);
const FT angle_rad = static_cast<FT>(
std::atan2(CGAL::to_double(det), CGAL::to_double(dot)));
const FT angle_deg = degrees_2(angle_rad);
return angle_deg;
}
// Converts an angle in degrees from the range [-180, 180]
// into the mod 90 angle.
template<typename FT>
const FT convert_angle_2(const FT angle_2) {
FT angle = angle_2;
if (angle > FT(90)) angle = FT(180) - angle;
else if (angle < -FT(90)) angle = FT(180) + angle;
return angle;
}
// Computes a positive angle in degrees that
// is always in the range [0, 90].
template<typename Direction_2>
const typename Kernel_traits<Direction_2>::Kernel::FT
angle_2(const Direction_2& dir1, const Direction_2& dir2) {
const auto angle_2 = compute_angle_2(dir1, dir2);
return CGAL::abs(convert_angle_2(angle_2));
}
// Classes.
template<typename IVertex>
class Indexer {
public:
std::size_t operator()(const IVertex& ivertex) {
const auto pair = m_indices.insert(
std::make_pair(ivertex, m_indices.size()));
const auto& item = pair.first;
const std::size_t idx = item->second;
return idx;
}
void clear() { m_indices.clear(); }
private:
std::map<IVertex, std::size_t> m_indices;
};
template<
typename GeomTraits,
typename InputRange,
typename NeighborQuery>
class Estimate_normals_2 {
public:
using Traits = GeomTraits;
using Input_range = InputRange;
using Neighbor_query = NeighborQuery;
using Kernel = Traits;
using FT = typename Kernel::FT;
using Vector_2 = typename Kernel::Vector_2;
using Line_2 = typename Kernel::Line_2;
using Indices = std::vector<std::size_t>;
using IK = CGAL::Exact_predicates_inexact_constructions_kernel;
using IPoint_2 = typename IK::Point_2;
using ILine_2 = typename IK::Line_2;
using Converter = CGAL::Cartesian_converter<Kernel, IK>;
Estimate_normals_2(
const Input_range& input_range,
const Neighbor_query& neighbor_query) :
m_input_range(input_range),
m_neighbor_query(neighbor_query) {
CGAL_precondition(input_range.size() > 0);
}
void get_normals(std::vector<Vector_2>& normals) const {
normals.clear();
normals.reserve(m_input_range.size());
Indices neighbors;
for (std::size_t i = 0; i < m_input_range.size(); ++i) {
neighbors.clear();
m_neighbor_query(i, neighbors);
const auto line = fit_line(neighbors);
auto normal = line.to_vector();
normal = normal.perpendicular(CGAL::COUNTERCLOCKWISE);
normal = normalize(normal);
normals.push_back(normal);
}
CGAL_assertion(normals.size() == m_input_range.size());
}
private:
const Input_range& m_input_range;
const Neighbor_query& m_neighbor_query;
const Converter m_converter;
const Line_2 fit_line(const Indices& indices) const {
CGAL_assertion(indices.size() > 0);
std::vector<IPoint_2> points;
points.reserve(indices.size());
for (const std::size_t index : indices) {
const auto& point = get(m_neighbor_query.point_map(), index);
points.push_back(m_converter(point));
}
CGAL_assertion(points.size() == indices.size());
ILine_2 fitted_line;
IPoint_2 fitted_centroid;
CGAL::linear_least_squares_fitting_2(
points.begin(), points.end(),
fitted_line, fitted_centroid,
CGAL::Dimension_tag<0>());
const Line_2 line(
static_cast<FT>(fitted_line.a()),
static_cast<FT>(fitted_line.b()),
static_cast<FT>(fitted_line.c()));
return line;
}
};
#endif
} // namespace internal
} // namespace KSP
} // namespace CGAL
#endif // CGAL_KSP_UTILS_H