cgal/BGL/include/CGAL/boost/graph/Seam_mesh.h

389 lines
9.8 KiB
C++

#ifndef CGAL_SEAM_MESH_H
#define CGAL_SEAM_MESH_H
#include <boost/unordered_set.hpp>
#include <CGAL/boost/graph/iterator.h>
#include <CGAL/boost/graph/graph_traits_Seam_mesh.h>
#include <CGAL/Polygon_mesh_processing/connected_components.h>
namespace CGAL {
/*!
\ingroup PkgBGLHelper
The class template `Seam_mesh` is an adaptor that allows
*/
template <class TM>
class Seam_mesh {
typedef Seam_mesh<TM> Self;
typedef typename boost::graph_traits<TM>::halfedge_descriptor TM_halfedge_descriptor;
typedef typename boost::graph_traits<TM>::halfedge_iterator TM_halfedge_iterator;
typedef typename boost::graph_traits<TM>::edge_descriptor TM_edge_descriptor;
typedef typename boost::graph_traits<TM>::vertex_descriptor TM_vertex_descriptor;
public:
typedef typename boost::graph_traits<TM>::face_descriptor face_descriptor;
const TM& mesh()const
{
return tm;
}
struct halfedge_descriptor;
/** A vertex
*
**/
struct vertex_descriptor{
vertex_descriptor()
{}
vertex_descriptor(const halfedge_descriptor& h)
:hd(h)
{}
vertex_descriptor(const vertex_descriptor& other)
: hd(other.hd)
{}
bool operator ==(const vertex_descriptor& other) const
{
return (hd == other.hd);
}
bool operator !=(const vertex_descriptor& other) const
{
return (hd != other.hd);
}
bool operator<(const vertex_descriptor& other) const
{
return hd < other.hd;
}
operator TM_halfedge_descriptor() const
{
return hd;
}
friend std::ostream& operator<<(std::ostream& os, const vertex_descriptor vd)
{
os << "seam mesh vertex: " << vd.hd;
return os;
}
friend std::size_t hash_value(const vertex_descriptor& vd)
{
return hash_value(vd.hd.tmhd);
}
halfedge_descriptor hd;
};
class vertex_iterator
: public boost::iterator_facade< vertex_iterator,
vertex_descriptor,
std::forward_iterator_tag
>
{
typedef boost::iterator_facade< vertex_iterator,
vertex_descriptor,
std::forward_iterator_tag
> Facade;
public:
vertex_iterator() : hd(), end(), mesh_(NULL) {}
vertex_iterator(const Iterator_range<TM_halfedge_iterator>& ir, const Self* m)
: hd(ir.first), end(ir.second), mesh_(m)
{
//std::cerr << "vertex_iterator(..)\n";
//std::cerr << *hd << std::endl;
if(hd == end) return;
TM_vertex_descriptor tvd = target(*hd,mesh_->mesh());
if( (! mesh_->has_on_seam(tvd))&& (halfedge(tvd,mesh_->mesh()) == *hd)) return;
if(mesh_->has_on_seam(edge(*hd,mesh_->mesh()))) return;
if(mesh_->has_on_seam(tvd) && is_border(opposite(*hd,mesh_->mesh()),mesh_->mesh())) return;
increment();
//std::cerr << *hd << " after increment" << std::endl;
//std::cerr << "leave vertex_iterator(..)\n";
}
// constructor for the past the end iterator
vertex_iterator(const TM_halfedge_iterator& hd, const Self* m)
: hd(hd), end(hd), mesh_(m) {
}
vertex_iterator(const vertex_iterator& other)
: hd(other.hd), end(other.end), mesh_(other.mesh_)
{}
private:
friend class boost::iterator_core_access;
void increment()
{
//std::cerr << "increment\n";
if(hd == end) return;
do{
++hd;
//std::cerr << *hd << " ++" << std::endl;
if(hd == end) return;
TM_vertex_descriptor tvd = target(*hd,mesh_->mesh());
//std::cerr << "tvd = " << tvd << std::endl;
if( (! mesh_->has_on_seam(tvd))&& (halfedge(tvd,mesh_->mesh()) == *hd)){
//std::cerr <<"return as not on seam and reverse incidence\n";
return;
}
if(mesh_->has_on_seam(edge(*hd,mesh_->mesh()))){
//std::cerr <<"return as edge on seam\n";
return;
}
if(mesh_->has_on_seam(tvd) && is_border(opposite(*hd,mesh_->mesh()),mesh_->mesh())){
//std::cerr <<"return as edge on border and target on seam\n";
return;
}
}while(true);
}
bool equal(const vertex_iterator& other) const
{
return (this->hd == other.hd) && (this->mesh_ == other.mesh_);
}
vertex_descriptor dereference() const { return vertex_descriptor(*hd); }
TM_halfedge_iterator hd, end;
const Self* mesh_;
};
bool has_on_seam(TM_vertex_descriptor vd) const
{
return seam_vertices.find(vd) != seam_vertices.end();
}
bool has_on_seam(TM_edge_descriptor ed) const
{
return seam_edges.find(ed) != seam_edges.end();
}
Iterator_range<vertex_iterator> m_vertices() const
{
Iterator_range<TM_halfedge_iterator> ir = halfedges(tm);
vertex_iterator beg(ir,this);
vertex_iterator end(ir.second,this);
return make_range(beg,end);
}
struct halfedge_descriptor {
TM_halfedge_descriptor tmhd;
bool seam;
halfedge_descriptor()
: tmhd(), seam(false)
{}
halfedge_descriptor(const halfedge_descriptor& other)
: tmhd(other.tmhd), seam(other.seam)
{}
halfedge_descriptor(TM_halfedge_descriptor tmhd, bool seam=false)
: tmhd(tmhd),seam(seam)
{}
bool operator ==(const halfedge_descriptor& other) const
{
return (tmhd == other.tmhd) && (seam == other.seam);
}
bool operator !=(const halfedge_descriptor& other) const
{
return (tmhd != other.tmhd) || (seam != other.seam);
}
bool operator<(const halfedge_descriptor& other) const
{
return tmhd < other.tmhd;
}
operator TM_halfedge_descriptor() const
{
return tmhd;
}
friend
std::ostream& operator<<(std::ostream& os, const halfedge_descriptor& hd)
{
os << hd.tmhd << ((hd.seam)?" on seam":"");
return os;
}
};
struct edge_descriptor {
halfedge_descriptor hd;
edge_descriptor(const halfedge_descriptor& hd)
: hd(hd)
{}
};
const TM& tm;
boost::unordered_set<TM_edge_descriptor> seam_edges;
boost::unordered_set<TM_vertex_descriptor> seam_vertices;
int index;
public:
template <typename EdgeRange>
Seam_mesh(const TM& tm, EdgeRange er)
: tm(tm), seam_edges(er.begin(), er.end()), index(0)
{
BOOST_FOREACH(TM_edge_descriptor ed, seam_edges){
seam_vertices.insert(source(ed,tm));
seam_vertices.insert(target(ed,tm));
}
}
/// Sets indices to 0,1,2,... for vertices in the region
template <typename VertexIndexMap>
void initialize_vertex_index_map(halfedge_descriptor bhd, VertexIndexMap& vipm)
{
Self& mesh=*this;
index = 0;
std::vector<face_descriptor> faces;
boost::graph_traits<Seam_mesh>::halfedge_descriptor shd(opposite(bhd,*this));
CGAL::Polygon_mesh_processing::connected_component(face(shd,*this),
*this,
std::back_inserter(faces));
BOOST_FOREACH(face_descriptor fd, faces){
BOOST_FOREACH(TM_halfedge_descriptor tmhd , halfedges_around_face(halfedge(fd,tm),tm)){
halfedge_descriptor hd(tmhd);
vertex_descriptor vd = target(hd,mesh);
put(vipm,vd,-1);
}
}
BOOST_FOREACH(face_descriptor fd, faces){
BOOST_FOREACH(TM_halfedge_descriptor tmhd , halfedges_around_face(halfedge(fd,tm),tm)){
halfedge_descriptor hd(tmhd);
vertex_descriptor vd = target(hd,mesh);
if(get(vipm,vd) == -1){
put(vipm,vd,index);
++index;
}
}
}
}
// this is the number of different halfedge indices
int m_num_vertices() const
{
return index;
}
bool is_on_seam(const halfedge_descriptor hd) const
{
return seam_edges.find(edge(hd, tm)) != seam_edges.end();
}
halfedge_descriptor m_next(const halfedge_descriptor& hd) const
{
if((! hd.seam)&& (! is_border(hd.tmhd,tm))){
return halfedge_descriptor(next(hd.tmhd, tm));
}
Halfedge_around_target_circulator<TM> hatc(hd.tmhd,tm);
do {
--hatc;
}while((! is_on_seam(*hatc))&&(! is_border(opposite(*hatc,tm),tm)));
return halfedge_descriptor(opposite(*hatc,tm), ! is_border(opposite(*hatc,tm),tm));
}
halfedge_descriptor m_prev(const halfedge_descriptor& hd) const
{
if((! hd.seam)&& (! is_border(hd.tmhd,tm))){
return halfedge_descriptor(prev(hd.tmhd, tm));
}
Halfedge_around_source_circulator<TM> hatc(hd.tmhd,tm);
do {
++hatc;
}while((! is_on_seam(*hatc))&&(! is_border(opposite(*hatc,tm),tm)));
return halfedge_descriptor(opposite(*hatc,tm), ! is_border(opposite(*hatc,tm),tm));
}
halfedge_descriptor m_opposite(const halfedge_descriptor& hd) const
{
if(! hd.seam){
return halfedge_descriptor(opposite(hd.tmhd,tm), is_on_seam(hd));
}
return halfedge_descriptor(opposite(hd.tmhd,tm));
}
vertex_descriptor m_target(halfedge_descriptor hd) const
{
TM_halfedge_descriptor tmhd(hd);
if(! has_on_seam(target(tmhd,tm))){
tmhd = halfedge(target(tmhd,tm),tm);
return vertex_descriptor(halfedge_descriptor(tmhd));
}
if(hd.seam){
return m_opposite(m_next(hd));
}
while((! has_on_seam(tmhd)) && (! is_border(opposite(tmhd,tm),tm))){
tmhd = prev(opposite(tmhd,tm),tm);
}
return vertex_descriptor(halfedge_descriptor(tmhd));
}
/*
vertex_descriptor m_target(const halfedge_descriptor& hd) const
{
return m_target(hd.tmhd);
}
*/
vertex_descriptor m_source(const halfedge_descriptor& hd) const
{
return m_target(opposite(hd.tmhd, tm));
}
};
} // namespace
#endif CGAL_SEAM_MESH_H