mirror of https://github.com/CGAL/cgal
155 lines
4.6 KiB
C++
155 lines
4.6 KiB
C++
// ============================================================================
|
|
//
|
|
// Copyright (c) 2001-2006 Max-Planck-Institut Saarbruecken (Germany).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of EXACUS (http://www.mpi-inf.mpg.de/projects/EXACUS/).
|
|
// You can redistribute it and/or modify it under the terms of the GNU
|
|
// General Public License as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// ----------------------------------------------------------------------------
|
|
//
|
|
// Library : CGAL
|
|
// File : test/modular_gcd_utils.C
|
|
// CGAL_release : $Name: $
|
|
// Revision : $Revision$
|
|
// Revision_date : $Date$
|
|
//
|
|
// Author(s) : Dominik Huelse <dominik.huelse@gmx.de>
|
|
//
|
|
//
|
|
// ============================================================================
|
|
|
|
/*! \file CGAL/Polynomial/modular_gcd_utils.C
|
|
test for the function euclidean_division_obstinate
|
|
*/
|
|
|
|
#include <CGAL/basic.h>
|
|
#include <CGAL/gen_polynomials.h>
|
|
#include <CGAL/Polynomial/modular_gcd_utils.h>
|
|
#include <CGAL/Random.h>
|
|
#include <CGAL/Arithmetic_kernel.h>
|
|
#include <CGAL/Sqrt_extension.h>
|
|
#include <CGAL/Polynomial.h>
|
|
|
|
#include <cassert>
|
|
|
|
template<class AT>
|
|
void test_modular_gcd_utils() {
|
|
CGAL_SNAP_ARITHMETIC_KERNEL_TYPEDEFS(AT);
|
|
|
|
CGAL::Random my_random(4711);
|
|
::CGAL::set_pretty_mode(std::cout);
|
|
|
|
typedef typename AT::Integer Integer;
|
|
typedef Integer NT;
|
|
|
|
{
|
|
// testing integers
|
|
Integer f, g, q, r;
|
|
|
|
// random integers
|
|
for(int l=0;l<100;l++){
|
|
f = CGAL::internal::rand_int<Integer>(my_random.get_int(10,1000));
|
|
g = CGAL::internal::rand_int<Integer>(my_random.get_int(10,1000));
|
|
CGAL::internal::euclidean_division_obstinate(f, g, q, r);
|
|
assert(f==g*q+r);
|
|
}
|
|
}
|
|
|
|
{
|
|
typedef CGAL::Polynomial<Integer> Poly;
|
|
typedef typename CGAL::Modular_traits<Poly>::Residue_type MPoly;
|
|
CGAL::Residue::set_current_prime(43);
|
|
|
|
Poly a, b;
|
|
MPoly mQ, mR;
|
|
|
|
a = Poly(0);
|
|
b = Poly(NT(122),NT(72));
|
|
|
|
MPoly ma = CGAL::modular_image(a);
|
|
MPoly mb = CGAL::modular_image(b);
|
|
CGAL::internal::euclidean_division_obstinate(ma, mb, mQ, mR);
|
|
assert(ma==mb*mQ+mR);
|
|
|
|
// random polynomials with integer coefficients
|
|
Poly f, g;
|
|
int l;
|
|
|
|
// random polynomials with integer coefficients
|
|
for(l=0;l<100;l++){
|
|
f = CGAL::internal::rand_Poly_int<Integer>(my_random.get_int(10,1000),
|
|
my_random.get_int(1,15));
|
|
g = CGAL::internal::rand_Poly_int<Integer>(my_random.get_int(10,1000),
|
|
my_random.get_int(1,10));
|
|
CGAL::Residue::set_current_prime(4483);
|
|
MPoly mf= CGAL::modular_image(f);
|
|
MPoly mg= CGAL::modular_image(g);
|
|
CGAL::internal::euclidean_division_obstinate(mf, mg, mQ, mR);
|
|
|
|
assert(mf ==mg*mQ+mR);
|
|
}
|
|
}
|
|
|
|
{
|
|
typedef CGAL::Sqrt_extension<Integer,Integer> EXT;
|
|
typedef CGAL::Polynomial<EXT> Poly_Ext;
|
|
typedef typename CGAL::Modular_traits<Poly_Ext>::Residue_type MPoly_Ext;
|
|
CGAL::Residue::set_current_prime(43);
|
|
|
|
Poly_Ext a, b;
|
|
MPoly_Ext mQ, mR;
|
|
|
|
a = Poly_Ext(0);
|
|
b = Poly_Ext(NT(122),NT(72),NT(17));
|
|
|
|
MPoly_Ext ma = CGAL::modular_image(a);
|
|
MPoly_Ext mb = CGAL::modular_image(b);
|
|
CGAL::internal::euclidean_division_obstinate(ma, mb, mQ, mR);
|
|
assert(ma == mb*mQ+mR);
|
|
|
|
// random polynomials with sqrt coefficients
|
|
Poly_Ext f, g;
|
|
int l;
|
|
MPoly_Ext mf, mg;
|
|
|
|
CGAL::Residue::set_current_prime(4253);
|
|
for(l=0;l<2;l++){
|
|
f = CGAL::internal::rand_Poly_sqrt<EXT,Integer>
|
|
(my_random.get_int(10,1000),my_random.get_int(1,15),NT(8293));
|
|
g = CGAL::internal::rand_Poly_sqrt<EXT,Integer>
|
|
(my_random.get_int(10,1000),my_random.get_int(1,10),NT(8293));
|
|
MPoly_Ext mf= CGAL::modular_image(f);
|
|
MPoly_Ext mg= CGAL::modular_image(g);
|
|
CGAL::internal::euclidean_division_obstinate(mf, mg, mQ, mR);
|
|
assert(mf == mg*mQ+mR);
|
|
}
|
|
}
|
|
}
|
|
int main(){
|
|
// Enforce IEEE double precision and to nearest before using modular arithmetic
|
|
CGAL::Protect_FPU_rounding<true> pfr(CGAL_FE_TONEAREST);
|
|
|
|
#ifdef CGAL_USE_LEDA
|
|
test_modular_gcd_utils<CGAL::LEDA_arithmetic_kernel>();
|
|
#endif // CGAL_USE_LEDA
|
|
|
|
#ifdef CGAL_USE_CORE
|
|
test_modular_gcd_utils<CGAL::CORE_arithmetic_kernel>();
|
|
#endif // Lis_HAVE_CORE
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// EOF
|
|
|