cgal/Polyhedron/demo/Polyhedron/Plugins/Classification/Surface_mesh_item_classific...

431 lines
13 KiB
C++

#include "Surface_mesh_item_classification.h"
#include "Color_ramp.h"
#include <CGAL/Timer.h>
#include <CGAL/Memory_sizer.h>
#include <CGAL/Three/Viewer_interface.h>
#include <QLineEdit>
#include <set>
#include <stack>
#include <algorithm>
#include <boost/array.hpp>
Surface_mesh_item_classification::Surface_mesh_item_classification(Scene_surface_mesh_item* mesh)
: m_mesh (mesh),
m_selection (NULL),
m_generator (NULL)
{
m_index_color = 1;
backup_existing_colors_and_add_new();
m_training = m_mesh->polyhedron()->add_property_map<face_descriptor, std::size_t>("f:training", std::size_t(-1)).first;
m_classif = m_mesh->polyhedron()->add_property_map<face_descriptor, std::size_t>("f:label", std::size_t(-1)).first;
m_labels.add("ground");
m_labels.add("vegetation");
m_labels.add("roof");
m_labels.add("facade");
for (std::size_t i = 0; i < m_labels.size(); ++ i)
m_label_colors.push_back (this->get_new_label_color (m_labels[i]->name()));
m_sowf = new Sum_of_weighted_features (m_labels, m_features);
m_ethz = NULL;
#ifdef CGAL_LINKED_WITH_OPENCV
m_random_forest = NULL;
#endif
#ifdef CGAL_LINKED_WITH_TENSORFLOW
m_neural_network = NULL;
#endif
}
Surface_mesh_item_classification::~Surface_mesh_item_classification()
{
if (m_sowf != NULL)
delete m_sowf;
if (m_ethz != NULL)
delete m_ethz;
#ifdef CGAL_LINKED_WITH_OPENCV
if (m_random_forest != NULL)
delete m_random_forest;
#endif
#ifdef CGAL_LINKED_WITH_TENSORFLOW
if (m_neural_network != NULL)
delete m_neural_network;
#endif
if (m_generator != NULL)
delete m_generator;
}
void Surface_mesh_item_classification::backup_existing_colors_and_add_new()
{
bool has_colors = false;
boost::tie (m_color, has_colors) = m_mesh->polyhedron()->property_map<face_descriptor, CGAL::Color>("f:color");
if (has_colors)
{
m_real_color
= m_mesh->polyhedron()->add_property_map<face_descriptor, CGAL::Color>("f:real_color").first;
for(face_descriptor fd : faces(*(m_mesh->polyhedron())))
{
m_real_color[fd] = m_color[fd];
m_color[fd] = CGAL::Color(128, 128, 128);
}
}
else
m_color =
m_mesh->polyhedron()->add_property_map<face_descriptor, CGAL::Color>("f:color", CGAL::Color(128,128,128)).first;
}
void Surface_mesh_item_classification::change_color (int index, float* vmin, float* vmax)
{
m_index_color = index;
int index_color = index;
if (index == 0 && m_real_color == Mesh::Property_map<face_descriptor, CGAL::Color>())
index_color = -1;
static Color_ramp ramp;
ramp.build_rainbow();
if (index_color == -1) // item color
{
for(face_descriptor fd : faces(*(m_mesh->polyhedron())))
m_color[fd] = CGAL::Color(128,128,128);
}
else if (index_color == 0) // real colors
{
for(face_descriptor fd : faces(*(m_mesh->polyhedron())))
m_color[fd] = m_real_color[fd];
}
else if (index_color == 1) // classif
{
for(face_descriptor fd : faces(*(m_mesh->polyhedron())))
{
QColor color (128, 128, 128);
std::size_t c = m_classif[fd];
if (c != std::size_t(-1))
color = m_label_colors[c];
m_color[fd] = CGAL::Color(color.red(), color.green(), color.blue());
}
}
else if (index_color == 2) // training
{
for(face_descriptor fd : faces(*(m_mesh->polyhedron())))
{
QColor color (128, 128, 128);
std::size_t c = m_training[fd];
std::size_t c2 = m_classif[fd];
if (c != std::size_t(-1))
color = m_label_colors[c];
float div = 1;
if (c != c2)
div = 2;
m_color[fd] = CGAL::Color(color.red() / div,
color.green() / div,
color.blue() / div);
}
}
else
{
std::size_t corrected_index = index_color - 3;
if (corrected_index < m_labels.size()) // Display label probabilities
{
if (m_label_probabilities.size() <= corrected_index ||
m_label_probabilities[corrected_index].size() != num_faces(*(m_mesh->polyhedron())))
{
for(face_descriptor fd : faces(*(m_mesh->polyhedron())))
{
m_color[fd] = CGAL::Color((unsigned char)(128),
(unsigned char)(128),
(unsigned char)(128));
}
}
else
{
for(face_descriptor fd : faces(*(m_mesh->polyhedron())))
{
float v = std::max (0.f, (std::min)(1.f, m_label_probabilities[corrected_index][fd]));
m_color[fd] = CGAL::Color((unsigned char)(ramp.r(v) * 255),
(unsigned char)(ramp.g(v) * 255),
(unsigned char)(ramp.b(v) * 255));
}
}
}
else
{
corrected_index -= m_labels.size();
if (corrected_index >= m_features.size())
{
std::cerr << "Error: trying to access feature " << corrected_index << " out of " << m_features.size() << std::endl;
return;
}
Feature_handle feature = m_features[corrected_index];
float min = (std::numeric_limits<float>::max)();
float max = -(std::numeric_limits<float>::max)();
if (vmin != NULL && vmax != NULL
&& *vmin != std::numeric_limits<float>::infinity()
&& *vmax != std::numeric_limits<float>::infinity())
{
min = *vmin;
max = *vmax;
}
else
{
for(face_descriptor fd : faces(*(m_mesh->polyhedron())))
{
if (feature->value(fd) > max)
max = feature->value(fd);
if (feature->value(fd) < min)
min = feature->value(fd);
}
}
for(face_descriptor fd : faces(*(m_mesh->polyhedron())))
{
float v = (feature->value(fd) - min) / (max - min);
if (v < 0.f) v = 0.f;
if (v > 1.f) v = 1.f;
m_color[fd] = CGAL::Color((unsigned char)(ramp.r(v) * 255),
(unsigned char)(ramp.g(v) * 255),
(unsigned char)(ramp.b(v) * 255));
}
if (vmin != NULL && vmax != NULL)
{
*vmin = min;
*vmax = max;
}
}
}
}
void Surface_mesh_item_classification::compute_features (std::size_t nb_scales, float voxel_size)
{
std::cerr << "Computing features with " << nb_scales << " scale(s) and ";
if (voxel_size == -1)
std::cerr << "automatic voxel size" << std::endl;
else
std::cerr << "voxel size = " << voxel_size << std::endl;
m_features.clear();
if (m_generator != NULL)
delete m_generator;
Face_center_map fc_map (m_mesh->polyhedron());
m_generator = new Generator (*(m_mesh->polyhedron()), fc_map, nb_scales, voxel_size);
#ifdef CGAL_LINKED_WITH_TBB
m_features.begin_parallel_additions();
#endif
m_generator->generate_point_based_features(m_features);
m_generator->generate_face_based_features(m_features);
#ifdef CGAL_LINKED_WITH_TBB
m_features.end_parallel_additions();
#endif
delete m_sowf;
m_sowf = new Sum_of_weighted_features (m_labels, m_features);
if (m_ethz != NULL)
{
delete m_ethz;
m_ethz = NULL;
}
#ifdef CGAL_LINKED_WITH_OPENCV
if (m_random_forest != NULL)
{
delete m_random_forest;
m_random_forest = NULL;
}
#endif
#ifdef CGAL_LINKED_WITH_TENSORFLOW
if (m_neural_network != NULL)
{
delete m_neural_network;
m_neural_network = NULL;
}
#endif
std::cerr << "Features = " << m_features.size() << std::endl;
}
void Surface_mesh_item_classification::train (int classifier, const QMultipleInputDialog& dialog)
{
if (m_features.size() == 0)
{
std::cerr << "Error: features not computed" << std::endl;
return;
}
m_label_probabilities.clear();
m_label_probabilities.resize (m_labels.size());
for (std::size_t i = 0; i < m_label_probabilities.size(); ++ i)
m_label_probabilities[i].resize (num_faces(*(m_mesh->polyhedron())));
std::vector<std::size_t> training (num_faces(*(m_mesh->polyhedron())), std::size_t(-1));
std::vector<std::size_t> indices (num_faces(*(m_mesh->polyhedron())), std::size_t(-1));
std::vector<std::size_t> nb_label (m_labels.size(), 0);
std::size_t nb_total = 0;
for(face_descriptor fd : faces(*(m_mesh->polyhedron())))
{
training[fd] = m_training[fd];
if (training[fd] != std::size_t(-1))
{
nb_label[training[fd]] ++;
++ nb_total;
}
}
std::cerr << nb_total << " face(s) used for training ("
<< 100. * (nb_total / double(m_mesh->polyhedron()->faces().size())) << "% of the total):" << std::endl;
for (std::size_t i = 0; i < m_labels.size(); ++ i)
std::cerr << " * " << m_labels[i]->name() << ": " << nb_label[i] << " face(s)" << std::endl;
if (classifier == 0)
{
m_sowf->train<Concurrency_tag>(training, dialog.get<QSpinBox>("trials")->value());
CGAL::Classification::classify<Concurrency_tag> (m_mesh->polyhedron()->faces(),
m_labels, *m_sowf,
indices, m_label_probabilities);
}
else if (classifier == 1)
{
if (m_ethz != NULL)
delete m_ethz;
m_ethz = new ETHZ_random_forest (m_labels, m_features);
m_ethz->train<Concurrency_tag>(training, true,
dialog.get<QSpinBox>("num_trees")->value(),
dialog.get<QSpinBox>("max_depth")->value());
CGAL::Classification::classify<Concurrency_tag> (m_mesh->polyhedron()->faces(),
m_labels, *m_ethz,
indices, m_label_probabilities);
}
else if (classifier == 2)
{
#ifdef CGAL_LINKED_WITH_OPENCV
if (m_random_forest != NULL)
delete m_random_forest;
m_random_forest = new Random_forest (m_labels, m_features,
dialog.get<QSpinBox>("max_depth")->value(), 5, 15,
dialog.get<QSpinBox>("num_trees")->value());
m_random_forest->train (training);
CGAL::Classification::classify<Concurrency_tag> (m_mesh->polyhedron()->faces(),
m_labels, *m_random_forest,
indices, m_label_probabilities);
#endif
}
else if (classifier == 3)
{
#ifdef CGAL_LINKED_WITH_TENSORFLOW
if (m_neural_network != NULL)
{
if (m_neural_network->initialized())
{
if (dialog.get<QCheckBox>("restart")->isChecked())
{
delete m_neural_network;
m_neural_network = new Neural_network (m_labels, m_features);
}
}
else
{
delete m_neural_network;
m_neural_network = new Neural_network (m_labels, m_features);
}
}
else
m_neural_network = new Neural_network (m_labels, m_features);
std::vector<std::size_t> hidden_layers;
std::string hl_input = dialog.get<QLineEdit>("hidden_layers")->text().toStdString();
if (hl_input != "")
{
std::istringstream iss(hl_input);
int s;
while (iss >> s)
hidden_layers.push_back (std::size_t(s));
}
m_neural_network->train (training,
dialog.get<QCheckBox>("restart")->isChecked(),
dialog.get<QSpinBox>("trials")->value(),
dialog.get<DoubleEdit>("learning_rate")->value(),
dialog.get<QSpinBox>("batch_size")->value(),
hidden_layers);
CGAL::Classification::classify<Concurrency_tag> (m_mesh->polyhedron()->faces(),
m_labels, *m_neural_network,
indices, m_label_probabilities);
#endif
}
for(face_descriptor fd : faces(*(m_mesh->polyhedron())))
m_classif[fd] = indices[fd];
if (m_index_color == 1 || m_index_color == 2)
change_color (m_index_color);
}
bool Surface_mesh_item_classification::run (int method, int classifier,
std::size_t subdivisions, double smoothing)
{
if (m_features.size() == 0)
{
std::cerr << "Error: features not computed" << std::endl;
return false;
}
if (classifier == 0)
run (method, *m_sowf, subdivisions, smoothing);
else if (classifier == 1)
{
if (m_ethz == NULL)
{
std::cerr << "Error: ETHZ Random Forest must be trained or have a configuration loaded first" << std::endl;
return false;
}
run (method, *m_ethz, subdivisions, smoothing);
}
else if (classifier == 2)
{
#ifdef CGAL_LINKED_WITH_OPENCV
if (m_random_forest == NULL)
{
std::cerr << "Error: OpenCV Random Forest must be trained or have a configuration loaded first" << std::endl;
return false;
}
run (method, *m_random_forest, subdivisions, smoothing);
#endif
}
else if (classifier == 3)
{
#ifdef CGAL_LINKED_WITH_TENSORFLOW
if (m_neural_network == NULL)
{
std::cerr << "Error: TensorFlow Neural Network must be trained or have a configuration loaded first" << std::endl;
return false;
}
run (method, *m_neural_network, subdivisions, smoothing);
#endif
}
return true;
}