cgal/Weights/include/CGAL/Weights/discrete_harmonic_weights.h

394 lines
13 KiB
C++

// Copyright (c) 2020 GeometryFactory SARL (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Dmitry Anisimov, David Bommes, Kai Hormann, Pierre Alliez
//
#ifndef CGAL_DISCRETE_HARMONIC_WEIGHTS_H
#define CGAL_DISCRETE_HARMONIC_WEIGHTS_H
#include <CGAL/Weights/internal/utils.h>
#include <CGAL/Weights/internal/polygon_utils_2.h>
#include <CGAL/Point_2.h>
#include <CGAL/Point_3.h>
#include <CGAL/property_map.h>
#include <vector>
namespace CGAL {
namespace Weights {
/// \cond SKIP_IN_MANUAL
namespace discrete_harmonic_ns {
template<typename FT>
FT weight(const FT d0, const FT d2, const FT d,
const FT A0, const FT A2, const FT B)
{
FT w = FT(0);
CGAL_precondition(!is_zero(A0) && !is_zero(A2));
const FT prod = A0 * A2;
if (!is_zero(prod))
w = (d2 * A0 - d * B + d0 * A2) / prod;
return w;
}
} // namespace discrete_harmonic_ns
/// \endcond
// 2D ==============================================================================================
/*!
\ingroup PkgWeightsRefDiscreteHarmonicWeights
\brief computes the discrete harmonic weight in 2D at `q` using the points `p0`, `p1`, and `p2`.
\tparam GeomTraits a model of `AnalyticWeightTraits_2`
*/
template<typename GeomTraits>
typename GeomTraits::FT discrete_harmonic_weight(const typename GeomTraits::Point_2& p0,
const typename GeomTraits::Point_2& p1,
const typename GeomTraits::Point_2& p2,
const typename GeomTraits::Point_2& q,
const GeomTraits& traits)
{
using FT = typename GeomTraits::FT;
auto squared_distance_2 = traits.compute_squared_distance_2_object();
auto area_2 = traits.compute_area_2_object();
const FT d0 = squared_distance_2(q, p0);
const FT d = squared_distance_2(q, p1);
const FT d2 = squared_distance_2(q, p2);
const FT A0 = area_2(p1, q, p0);
const FT A2 = area_2(p2, q, p1);
const FT B = area_2(p2, q, p0);
return discrete_harmonic_ns::weight(d0, d2, d, A0, A2, B);
}
/*!
\ingroup PkgWeightsRefDiscreteHarmonicWeights
\brief computes the discrete harmonic weight in 2D at `q` using the points `p0`, `p1`, and `p2`.
\tparam Kernel a model of `Kernel`
*/
template<typename Kernel>
typename Kernel::FT discrete_harmonic_weight(const CGAL::Point_2<Kernel>& p0,
const CGAL::Point_2<Kernel>& p1,
const CGAL::Point_2<Kernel>& p2,
const CGAL::Point_2<Kernel>& q)
{
const Kernel traits;
return discrete_harmonic_weight(p0, p1, p2, q, traits);
}
// 3D ==============================================================================================
/// \cond SKIP_IN_MANUAL
template<typename GeomTraits>
typename GeomTraits::FT discrete_harmonic_weight(const typename GeomTraits::Point_3& p0,
const typename GeomTraits::Point_3& p1,
const typename GeomTraits::Point_3& p2,
const typename GeomTraits::Point_3& q,
const GeomTraits& traits)
{
using Point_2 = typename GeomTraits::Point_2;
Point_2 p0f, p1f, p2f, qf;
internal::flatten(p0, p1, p2, q,
p0f, p1f, p2f, qf,
traits);
return discrete_harmonic_weight(p0f, p1f, p2f, qf, traits);
}
template<typename Kernel>
typename Kernel::FT discrete_harmonic_weight(const CGAL::Point_3<Kernel>& p0,
const CGAL::Point_3<Kernel>& p1,
const CGAL::Point_3<Kernel>& p2,
const CGAL::Point_3<Kernel>& q)
{
const Kernel traits;
return discrete_harmonic_weight(p0, p1, p2, q, traits);
}
/// \endcond
/*!
\ingroup PkgWeightsRefBarycentricDiscreteHarmonicWeights
\brief 2D discrete harmonic weights for polygons.
This class implements 2D discrete harmonic weights (\cite cgal:bc:eddhls-maam-95,
\cite cgal:bc:fhk-gcbcocp-06, \cite cgal:pp-cdmsc-93) which can be computed
at any point inside a strictly convex polygon.
Discrete harmonic weights are well-defined inside a strictly convex polygon
but they are not necessarily positive. These weights are computed analytically
using the formulation from the `discrete_harmonic_weight()`.
\tparam VertexRange a model of `ConstRange` whose iterator type is `RandomAccessIterator`
\tparam GeomTraits a model of `AnalyticWeightTraits_2`
\tparam PointMap a model of `ReadablePropertyMap` whose key type is `VertexRange::value_type` and
value type is `Point_2`. The default is `CGAL::Identity_property_map`.
\cgalModels{BarycentricWeights_2}
*/
template<typename VertexRange,
typename GeomTraits,
typename PointMap = CGAL::Identity_property_map<typename GeomTraits::Point_2> >
class Discrete_harmonic_weights_2
{
public:
/// \name Types
/// @{
/// \cond SKIP_IN_MANUAL
using Vertex_range = VertexRange;
using Geom_traits = GeomTraits;
using Point_map = PointMap;
using Area_2 = typename GeomTraits::Compute_area_2;
using Squared_distance_2 = typename GeomTraits::Compute_squared_distance_2;
/// \endcond
/// Number type.
typedef typename GeomTraits::FT FT;
/// Point type.
typedef typename GeomTraits::Point_2 Point_2;
/// @}
/// \name Initialization
/// @{
/*!
\brief initializes all internal data structures.
This class implements the behavior of discrete harmonic weights
for 2D query points inside strictly convex polygons.
\param polygon an instance of `VertexRange` with the vertices of a strictly convex polygon
\param traits a traits class with geometric objects, predicates, and constructions;
the default initialization is provided
\param point_map an instance of `PointMap` that maps a vertex from `polygon` to `Point_2`;
the default initialization is provided
\pre polygon.size() >= 3
\pre polygon is simple
\pre polygon is strictly convex
*/
Discrete_harmonic_weights_2(const VertexRange& polygon,
const GeomTraits traits = GeomTraits(),
const PointMap point_map = PointMap())
: m_polygon(polygon),
m_traits(traits),
m_point_map(point_map),
m_area_2(m_traits.compute_area_2_object()),
m_squared_distance_2(m_traits.compute_squared_distance_2_object())
{
CGAL_precondition(polygon.size() >= 3);
CGAL_precondition(internal::is_simple_2(polygon, traits, point_map));
CGAL_precondition(internal::polygon_type_2(polygon, traits, point_map) == internal::Polygon_type::STRICTLY_CONVEX);
resize();
}
/// @}
/// \name Access
/// @{
/*!
\brief computes 2D discrete harmonic weights.
This function fills a destination range with 2D discrete harmonic weights
computed at the `query` point with respect to the vertices of the input polygon.
The number of computed weights is equal to the number of polygon vertices.
\tparam OutIterator a model of `OutputIterator` whose value type is `FT`
\param query a query point
\param w_begin the beginning of the destination range with the computed weights
\return an output iterator to the element in the destination range, one past the last weight stored
*/
template<typename OutIterator>
OutIterator operator()(const Point_2& query,
OutIterator w_begin)
{
const bool normalize = false;
return operator()(query, w_begin, normalize);
}
/// @}
/// \cond SKIP_IN_MANUAL
template<typename OutIterator>
OutIterator operator()(const Point_2& query,
OutIterator w_begin,
const bool normalize)
{
return optimal_weights(query, w_begin, normalize);
}
/// \endcond
private:
const VertexRange& m_polygon;
const GeomTraits m_traits;
const PointMap m_point_map;
const Area_2 m_area_2;
const Squared_distance_2 m_squared_distance_2;
std::vector<FT> r;
std::vector<FT> A;
std::vector<FT> B;
std::vector<FT> w;
void resize()
{
r.resize(m_polygon.size());
A.resize(m_polygon.size());
B.resize(m_polygon.size());
w.resize(m_polygon.size());
}
template<typename OutputIterator>
OutputIterator optimal_weights(const Point_2& query,
OutputIterator weights,
const bool normalize)
{
// Get the number of vertices in the polygon.
const std::size_t n = m_polygon.size();
// Compute areas A, B, and distances r following the notation from [1].
// Split the loop to make this computation faster.
const auto& p1 = get(m_point_map, *(m_polygon.begin() + 0));
const auto& p2 = get(m_point_map, *(m_polygon.begin() + 1));
const auto& pn = get(m_point_map, *(m_polygon.begin() + (n - 1)));
r[0] = m_squared_distance_2(p1, query);
A[0] = m_area_2(p1, p2, query);
B[0] = m_area_2(pn, p2, query);
for (std::size_t i = 1; i < n - 1; ++i)
{
const auto& pi0 = get(m_point_map, *(m_polygon.begin() + (i - 1)));
const auto& pi1 = get(m_point_map, *(m_polygon.begin() + (i + 0)));
const auto& pi2 = get(m_point_map, *(m_polygon.begin() + (i + 1)));
r[i] = m_squared_distance_2(pi1, query);
A[i] = m_area_2(pi1, pi2, query);
B[i] = m_area_2(pi0, pi2, query);
}
const auto& pm = get(m_point_map, *(m_polygon.begin() + (n - 2)));
r[n - 1] = m_squared_distance_2(pn, query);
A[n - 1] = m_area_2(pn, p1, query);
B[n - 1] = m_area_2(pm, p1, query);
// Compute unnormalized weights following the formula (25) with p = 2 from [1].
CGAL_assertion(A[n - 1] != FT(0) && A[0] != FT(0));
w[0] = (r[1] * A[n - 1] - r[0] * B[0] + r[n - 1] * A[0]) / (A[n - 1] * A[0]);
for (std::size_t i = 1; i < n - 1; ++i)
{
CGAL_assertion(A[i - 1] != FT(0) && A[i] != FT(0));
w[i] = (r[i + 1] * A[i - 1] - r[i] * B[i] + r[i - 1] * A[i]) / (A[i - 1] * A[i]);
}
CGAL_assertion(A[n - 2] != FT(0) && A[n - 1] != FT(0));
w[n - 1] = (r[0] * A[n - 2] - r[n - 1] * B[n - 1] + r[n - 2] * A[n - 1]) / (A[n - 2] * A[n - 1]);
// Normalize if necessary.
if (normalize)
internal::normalize(w);
// Return weights.
for (std::size_t i = 0; i < n; ++i)
*(weights++) = w[i];
return weights;
}
};
/*!
\ingroup PkgWeightsRefBarycentricDiscreteHarmonicWeights
\brief computes 2D discrete harmonic weights for polygons.
This function computes 2D discrete harmonic weights at a given `query` point
with respect to the vertices of a strictly convex `polygon`, that is one
weight per vertex. The weights are stored in a destination range
beginning at `w_begin`.
Internally, the class `Discrete_harmonic_weights_2` is used. If one wants to process
multiple query points, it is better to use that class. When using the free function,
internal memory is allocated for each query point, while when using the class,
it is allocated only once which is much more efficient. However, for a few query
points, it is easier to use this function. It can also be used when the processing
time is not a concern.
\tparam PointRange a model of `ConstRange` whose iterator type is `RandomAccessIterator`
and value type is `GeomTraits::Point_2`
\tparam OutIterator a model of `OutputIterator` whose value type is `GeomTraits::FT`
\tparam GeomTraits a model of `AnalyticWeightTraits_2`
\param polygon an instance of `PointRange` with 2D points which form a strictly convex polygon
\param query a query point
\param w_begin the beginning of the destination range with the computed weights
\param traits a traits class with geometric objects, predicates, and constructions;
this parameter can be omitted if the traits class can be deduced from the point type
\return an output iterator to the element in the destination range, one past the last weight stored
\pre `polygon.size() >= 3`
\pre `polygon` is simple
\pre `polygon` is strictly convex
*/
template<typename PointRange,
typename OutIterator,
typename GeomTraits>
OutIterator discrete_harmonic_weights_2(const PointRange& polygon,
const typename GeomTraits::Point_2& query,
OutIterator w_begin,
const GeomTraits& traits)
{
Discrete_harmonic_weights_2<PointRange, GeomTraits> discrete_harmonic(polygon, traits);
return discrete_harmonic(query, w_begin);
}
/// \cond SKIP_IN_MANUAL
template<typename PointRange,
typename OutIterator>
OutIterator discrete_harmonic_weights_2(const PointRange& polygon,
const typename PointRange::value_type& query,
OutIterator w_begin)
{
using Point_2 = typename PointRange::value_type;
using GeomTraits = typename Kernel_traits<Point_2>::Kernel;
const GeomTraits traits;
return discrete_harmonic_weights_2(polygon, query, w_begin, traits);
}
/// \endcond
} // namespace Weights
} // namespace CGAL
#endif // CGAL_DISCRETE_HARMONIC_WEIGHTS_H