mirror of https://github.com/CGAL/cgal
1763 lines
50 KiB
C++
1763 lines
50 KiB
C++
// Copyright (c) 2006 Tel-Aviv University (Israel).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Ron Wein <wein@post.tau.ac.il>
|
|
|
|
#ifndef CGAL_ARR_LINEAR_TRAITS_2_H
|
|
#define CGAL_ARR_LINEAR_TRAITS_2_H
|
|
|
|
/*! \file
|
|
* The traits-class for handling linear objects (lines, rays and segments)
|
|
* in the arrangement package.
|
|
*/
|
|
|
|
#include <CGAL/tags.h>
|
|
#include <CGAL/representation_tags.h>
|
|
#include <CGAL/intersections.h>
|
|
#include <CGAL/Number_type_traits.h>
|
|
#include <CGAL/Arr_enums.h>
|
|
#include <CGAL/Arr_traits_2/Segment_assertions.h>
|
|
#include <fstream>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
template <class Kernel_> class Arr_linear_object_2;
|
|
|
|
/*! \class
|
|
* A traits class for maintaining an arrangement of linear objects (lines,
|
|
* rays and segments), aoviding cascading of computations as much as possible.
|
|
*/
|
|
template <class Kernel_>
|
|
class Arr_linear_traits_2
|
|
{
|
|
friend class Arr_linear_object_2<Kernel_>;
|
|
|
|
public:
|
|
|
|
typedef Kernel_ Kernel;
|
|
typedef typename Kernel::FT FT;
|
|
|
|
typedef typename Number_type_traits<FT>::Has_exact_division
|
|
Has_exact_division;
|
|
|
|
// Category tags:
|
|
typedef Tag_true Has_left_category;
|
|
typedef Tag_true Has_merge_category;
|
|
typedef Tag_true Has_infinite_category;
|
|
|
|
typedef typename Kernel::Line_2 Line_2;
|
|
typedef typename Kernel::Ray_2 Ray_2;
|
|
typedef typename Kernel::Segment_2 Segment_2;
|
|
|
|
typedef CGAL::Segment_assertions<Arr_linear_traits_2<Kernel> >
|
|
Segment_assertions;
|
|
|
|
/*!
|
|
* \class Representation of a linear with cached data.
|
|
*/
|
|
class _Linear_object_cached_2
|
|
{
|
|
public:
|
|
|
|
typedef typename Kernel::Line_2 Line_2;
|
|
typedef typename Kernel::Ray_2 Ray_2;
|
|
typedef typename Kernel::Segment_2 Segment_2;
|
|
typedef typename Kernel::Point_2 Point_2;
|
|
|
|
protected:
|
|
|
|
Line_2 l; // The supporting line.
|
|
Point_2 ps; // The source point (if exists).
|
|
Point_2 pt; // The target point (if exists).
|
|
bool has_source; // Is the source point valid
|
|
// (false for a line).
|
|
bool has_target; // Is the target point valid
|
|
// (false for a line and for a ray).
|
|
bool is_right; // Is the object directed to the right
|
|
// (for segments and rays).
|
|
bool is_vert; // Is this a vertical object.
|
|
bool is_horiz; // Is this a horizontal object.
|
|
bool has_pos_slope; // Does the supporting line has a positive
|
|
// slope (if all three flags is_vert, is_horiz
|
|
// and has_pos_slope are false, then the line
|
|
// has a negative slope).
|
|
bool is_degen; // Is the object degenerate (a single point).
|
|
|
|
public:
|
|
|
|
/*!
|
|
* Default constructor.
|
|
*/
|
|
_Linear_object_cached_2 () :
|
|
has_source (true),
|
|
has_target (true),
|
|
is_vert (false),
|
|
is_horiz (false),
|
|
has_pos_slope (false),
|
|
is_degen (true)
|
|
{}
|
|
|
|
/*!
|
|
* Constructor from a point.
|
|
* \param p The point.
|
|
*/
|
|
_Linear_object_cached_2 (const Point_2& p) :
|
|
ps (p),
|
|
pt (p),
|
|
has_source (true),
|
|
has_target (true),
|
|
is_vert (false),
|
|
is_horiz (false),
|
|
has_pos_slope (false),
|
|
is_degen (true)
|
|
{}
|
|
|
|
/*!
|
|
* Constructor for segment from two points.
|
|
* \param p1 source point.
|
|
* \param p2 target point.
|
|
*/
|
|
_Linear_object_cached_2(const Point_2& source, const Point_2& target) :
|
|
ps (source),
|
|
pt (target),
|
|
has_source (true),
|
|
has_target (true)
|
|
{
|
|
Kernel kernel;
|
|
|
|
Comparison_result res = kernel.compare_xy_2_object()(source, target);
|
|
is_degen = (res == EQUAL);
|
|
is_right = (res == SMALLER);
|
|
|
|
if (! is_degen)
|
|
{
|
|
l = kernel.construct_line_2_object()(source, target);
|
|
is_vert = kernel.is_vertical_2_object()(l);
|
|
is_horiz =
|
|
kernel.is_horizontal_2_object()(kernel.construct_segment_2_object()(source, target));
|
|
has_pos_slope = _has_positive_slope();
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Constructor from a segment.
|
|
* \param seg The segment.
|
|
*/
|
|
_Linear_object_cached_2 (const Segment_2& seg)
|
|
{
|
|
Kernel kernel;
|
|
|
|
CGAL_assertion (! kernel.is_degenerate_2_object() (seg));
|
|
|
|
typename Kernel_::Construct_vertex_2
|
|
construct_vertex = kernel.construct_vertex_2_object();
|
|
|
|
ps = construct_vertex(seg, 0);
|
|
has_source = true;
|
|
pt = construct_vertex(seg, 1);
|
|
has_target = true;
|
|
|
|
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
|
|
|
|
CGAL_assertion (res != EQUAL);
|
|
is_degen = false;
|
|
is_right = (res == SMALLER);
|
|
|
|
l = kernel.construct_line_2_object()(seg);
|
|
is_vert = kernel.is_vertical_2_object()(seg);
|
|
is_horiz = kernel.is_horizontal_2_object()(seg);
|
|
has_pos_slope = _has_positive_slope();
|
|
}
|
|
|
|
/*!
|
|
* Constructor from a ray.
|
|
* \param ray The ray.
|
|
*/
|
|
_Linear_object_cached_2 (const Ray_2& ray)
|
|
{
|
|
Kernel kernel;
|
|
|
|
CGAL_assertion (! kernel.is_degenerate_2_object() (ray));
|
|
|
|
typename Kernel_::Construct_point_on_2
|
|
construct_vertex = kernel.construct_point_on_2_object();
|
|
|
|
ps = construct_vertex(ray, 0); // The source point.
|
|
has_source = true;
|
|
pt = construct_vertex(ray, 1); // Some point on the ray.
|
|
has_target = false;
|
|
|
|
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
|
|
CGAL_assertion (res != EQUAL);
|
|
is_degen = false;
|
|
is_right = (res == SMALLER);
|
|
|
|
l = kernel.construct_line_2_object()(ray);
|
|
is_vert = kernel.is_vertical_2_object()(ray);
|
|
is_horiz = kernel.is_horizontal_2_object()(ray);
|
|
has_pos_slope = _has_positive_slope();
|
|
}
|
|
|
|
/*!
|
|
* Constructor from a line.
|
|
* \param ln The line.
|
|
*/
|
|
_Linear_object_cached_2 (const Line_2& ln) :
|
|
l (ln),
|
|
has_source (false),
|
|
has_target (false)
|
|
{
|
|
Kernel kernel;
|
|
|
|
CGAL_assertion (! kernel.is_degenerate_2_object() (ln));
|
|
|
|
typename Kernel_::Construct_point_on_2
|
|
construct_vertex = kernel.construct_point_on_2_object();
|
|
|
|
ps = construct_vertex(ln, 0); // Some point on the line.
|
|
has_source = false;
|
|
pt = construct_vertex(ln, 1); // Some point further on the line.
|
|
has_target = false;
|
|
|
|
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
|
|
CGAL_assertion (res != EQUAL);
|
|
is_degen = false;
|
|
is_right = (res == SMALLER);
|
|
|
|
is_vert = kernel.is_vertical_2_object()(ln);
|
|
is_horiz = kernel.is_horizontal_2_object()(ln);
|
|
has_pos_slope = _has_positive_slope();
|
|
}
|
|
|
|
/*!
|
|
* Check if the x-coordinate of the left point is infinite.
|
|
* \return MINUS_INFINITY if the left point is at x = -oo;
|
|
* FINITE if the x-coordinate is finite.
|
|
*/
|
|
Infinity_type left_infinite_in_x () const
|
|
{
|
|
if (is_vert || is_degen)
|
|
return (FINITE);
|
|
|
|
if (is_right)
|
|
return (has_source ? FINITE : MINUS_INFINITY);
|
|
else
|
|
return (has_target ? FINITE : MINUS_INFINITY);
|
|
}
|
|
|
|
/*!
|
|
* Check if the y-coordinate of the left point is infinite.
|
|
* \return MINUS_INFINITY if the left point is at y = -oo;
|
|
* PLUS_INFINITY if the left point is at y = -oo;
|
|
* FINITE if the y-coordinate is finite.
|
|
*/
|
|
Infinity_type left_infinite_in_y () const
|
|
{
|
|
if (is_horiz || is_degen)
|
|
return (FINITE);
|
|
|
|
if (is_vert)
|
|
{
|
|
if (is_right)
|
|
return (has_source ? FINITE : MINUS_INFINITY);
|
|
else
|
|
return (has_target ? FINITE : MINUS_INFINITY);
|
|
}
|
|
|
|
if ((is_right && has_source) || (! is_right && has_target))
|
|
return (FINITE);
|
|
|
|
return (has_pos_slope ? MINUS_INFINITY : PLUS_INFINITY);
|
|
}
|
|
|
|
/*!
|
|
* Check if the left point is finite.
|
|
*/
|
|
bool has_left () const
|
|
{
|
|
if (is_right)
|
|
return (has_source);
|
|
else
|
|
return (has_target);
|
|
}
|
|
|
|
/*!
|
|
* Get the (lexicographically) left endpoint.
|
|
* \pre The left point is finite.
|
|
*/
|
|
const Point_2& left () const
|
|
{
|
|
CGAL_precondition (has_left());
|
|
return (is_right ? ps : pt);
|
|
}
|
|
|
|
/*!
|
|
* Set the (lexicographically) left endpoint.
|
|
* \param p The point to set.
|
|
* \pre p lies on the supporting line to the left of the right endpoint.
|
|
*/
|
|
void set_left (const Point_2& p, bool check_validity = true)
|
|
{
|
|
CGAL_precondition (! is_degen);
|
|
|
|
CGAL_precondition_code (
|
|
Kernel kernel;
|
|
);
|
|
CGAL_precondition
|
|
(Segment_assertions::_assert_is_point_on (p, l,
|
|
Has_exact_division()) &&
|
|
(! check_validity || ! has_right() ||
|
|
kernel.compare_xy_2_object() (p, right()) == SMALLER));
|
|
|
|
if (is_right)
|
|
{
|
|
ps = p;
|
|
has_source = true;
|
|
}
|
|
else
|
|
{
|
|
pt = p;
|
|
has_target = true;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Set the (lexicographically) left endpoint as infinite.
|
|
*/
|
|
void set_left ()
|
|
{
|
|
CGAL_precondition (! is_degen);
|
|
|
|
if (is_right)
|
|
has_source = false;
|
|
else
|
|
has_target = false;
|
|
}
|
|
|
|
/*!
|
|
* Check if the x-coordinate of the right point is infinite.
|
|
* \return MINUS_INFINITY if the left point is at x = +oo;
|
|
* FINITE if the x-coordinate is finite.
|
|
*/
|
|
Infinity_type right_infinite_in_x () const
|
|
{
|
|
if (is_vert || is_degen)
|
|
return (FINITE);
|
|
|
|
if (is_right)
|
|
return (has_target ? FINITE : PLUS_INFINITY);
|
|
else
|
|
return (has_source ? FINITE : PLUS_INFINITY);
|
|
}
|
|
|
|
/*!
|
|
* Check if the y-coordinate of the right point is infinite.
|
|
* \return MINUS_INFINITY if the right point is at y = -oo;
|
|
* PLUS_INFINITY if the right point is at y = -oo;
|
|
* FINITE if the y-coordinate is finite.
|
|
*/
|
|
Infinity_type right_infinite_in_y () const
|
|
{
|
|
if (is_horiz || is_degen)
|
|
return (FINITE);
|
|
|
|
if (is_vert)
|
|
{
|
|
if (is_right)
|
|
return (has_target ? FINITE : PLUS_INFINITY);
|
|
else
|
|
return (has_source ? FINITE : PLUS_INFINITY);
|
|
}
|
|
|
|
if ((is_right && has_target) || (! is_right && has_source))
|
|
return (FINITE);
|
|
|
|
return (has_pos_slope ? PLUS_INFINITY : MINUS_INFINITY);
|
|
}
|
|
|
|
/*!
|
|
* Check if the right point is finite.
|
|
*/
|
|
bool has_right () const
|
|
{
|
|
if (is_right)
|
|
return (has_target);
|
|
else
|
|
return (has_source);
|
|
}
|
|
|
|
/*!
|
|
* Get the (lexicographically) right endpoint.
|
|
* \pre The right endpoint is finite.
|
|
*/
|
|
const Point_2& right () const
|
|
{
|
|
CGAL_precondition (has_right());
|
|
return (is_right ? pt : ps);
|
|
}
|
|
|
|
/*!
|
|
* Set the (lexicographically) right endpoint.
|
|
* \param p The point to set.
|
|
* \pre p lies on the supporting line to the right of the left endpoint.
|
|
*/
|
|
void set_right (const Point_2& p, bool check_validity = true)
|
|
{
|
|
CGAL_precondition (! is_degen);
|
|
CGAL_precondition_code (
|
|
Kernel kernel;
|
|
);
|
|
CGAL_precondition
|
|
(Segment_assertions::_assert_is_point_on (p, l,
|
|
Has_exact_division()) &&
|
|
(! check_validity || ! has_left() ||
|
|
kernel.compare_xy_2_object() (p, left()) == LARGER));
|
|
|
|
if (is_right)
|
|
{
|
|
pt = p;
|
|
has_target = true;
|
|
}
|
|
else
|
|
{
|
|
ps = p;
|
|
has_source = true;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Set the (lexicographically) right endpoint as infinite.
|
|
*/
|
|
void set_right ()
|
|
{
|
|
CGAL_precondition (! is_degen);
|
|
|
|
if (is_right)
|
|
has_target = false;
|
|
else
|
|
has_source = false;
|
|
}
|
|
|
|
/*!
|
|
* Get the supporting line.
|
|
*/
|
|
const Line_2& supp_line () const
|
|
{
|
|
CGAL_precondition (! is_degen);
|
|
return (l);
|
|
}
|
|
|
|
/*!
|
|
* Check if the curve is vertical.
|
|
*/
|
|
bool is_vertical () const
|
|
{
|
|
CGAL_precondition (! is_degen);
|
|
return (is_vert);
|
|
}
|
|
|
|
/*!
|
|
* Check if the curve is degenerate.
|
|
*/
|
|
bool is_degenerate () const
|
|
{
|
|
return (is_degen);
|
|
}
|
|
|
|
/*!
|
|
* Check if the curve is directed lexicographic from left to right
|
|
*/
|
|
bool is_directed_right () const
|
|
{
|
|
return (is_right);
|
|
}
|
|
|
|
/*!
|
|
* Check if the given point is in the x-range of the object.
|
|
* \param p The query point.
|
|
* \return (true) is in the x-range of the segment; (false) if it is not.
|
|
*/
|
|
bool is_in_x_range (const Point_2& p) const
|
|
{
|
|
Kernel kernel;
|
|
typename Kernel_::Compare_x_2 compare_x = kernel.compare_x_2_object();
|
|
Comparison_result res1;
|
|
|
|
if (left_infinite_in_x() == FINITE)
|
|
{
|
|
if (left_infinite_in_y() != FINITE)
|
|
// Compare with some point on the curve.
|
|
res1 = compare_x (p, ps);
|
|
else
|
|
res1 = compare_x (p, left());
|
|
}
|
|
else
|
|
{
|
|
// p is obviously to the right.
|
|
res1 = LARGER;
|
|
}
|
|
|
|
if (res1 == SMALLER)
|
|
return (false);
|
|
else if (res1 == EQUAL)
|
|
return (true);
|
|
|
|
Comparison_result res2;
|
|
|
|
if (right_infinite_in_x() == FINITE)
|
|
{
|
|
if (right_infinite_in_y() != FINITE)
|
|
// Compare with some point on the curve.
|
|
res2 = compare_x (p, ps);
|
|
else
|
|
res2 = compare_x (p, right());
|
|
}
|
|
else
|
|
{
|
|
// p is obviously to the right.
|
|
res2 = SMALLER;
|
|
}
|
|
|
|
return (res2 != LARGER);
|
|
}
|
|
|
|
/*!
|
|
* Check if the given point is in the y-range of the object.
|
|
* \param p The query point.
|
|
* \pre The object is vertical.
|
|
* \return (true) is in the y-range of the segment; (false) if it is not.
|
|
*/
|
|
bool is_in_y_range (const Point_2& p) const
|
|
{
|
|
CGAL_precondition (is_vertical());
|
|
|
|
Kernel kernel;
|
|
typename Kernel_::Compare_y_2 compare_y = kernel.compare_y_2_object();
|
|
Infinity_type inf = left_infinite_in_y();
|
|
Comparison_result res1;
|
|
|
|
CGAL_assertion (inf != PLUS_INFINITY);
|
|
if (inf == FINITE)
|
|
res1 = compare_y (p, left());
|
|
else
|
|
res1 = LARGER; // p is obviously above.
|
|
|
|
if (res1 == SMALLER)
|
|
return (false);
|
|
else if (res1 == EQUAL)
|
|
return (true);
|
|
|
|
Comparison_result res2;
|
|
|
|
inf = right_infinite_in_y();
|
|
CGAL_assertion (inf != MINUS_INFINITY);
|
|
if (inf == FINITE)
|
|
res2 = compare_y (p, right());
|
|
else
|
|
res2 = SMALLER; // p is obviously below.
|
|
|
|
return (res2 != LARGER);
|
|
}
|
|
|
|
private:
|
|
|
|
/*!
|
|
* Determine if the supporting line has a positive slope.
|
|
*/
|
|
bool _has_positive_slope () const
|
|
{
|
|
if (is_vert)
|
|
return (true);
|
|
|
|
if (is_horiz)
|
|
return (false);
|
|
|
|
// Construct a horizontal line and compare its slope the that of l.
|
|
Kernel kernel;
|
|
Line_2 l_horiz = kernel.construct_line_2_object() (Point_2 (0, 0),
|
|
Point_2 (1, 0));
|
|
|
|
return (kernel.compare_slope_2_object() (l, l_horiz) == LARGER);
|
|
}
|
|
};
|
|
|
|
public:
|
|
|
|
// Traits objects
|
|
typedef typename Kernel::Point_2 Point_2;
|
|
typedef Arr_linear_object_2<Kernel> X_monotone_curve_2;
|
|
typedef Arr_linear_object_2<Kernel> Curve_2;
|
|
|
|
public:
|
|
|
|
/*!
|
|
* Default constructor.
|
|
*/
|
|
Arr_linear_traits_2 ()
|
|
{}
|
|
|
|
/// \name Basic functor definitions.
|
|
//@{
|
|
|
|
class Compare_x_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Compare the x-coordinates of two points.
|
|
* \param p1 The first point.
|
|
* \param p2 The second point.
|
|
* \return LARGER if x(p1) > x(p2);
|
|
* SMALLER if x(p1) < x(p2);
|
|
* EQUAL if x(p1) = x(p2).
|
|
*/
|
|
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
|
|
{
|
|
Kernel kernel;
|
|
|
|
return (kernel.compare_x_2_object()(p1, p2));
|
|
}
|
|
|
|
/*!
|
|
* Compare the relative positions of a vertical curve and another given
|
|
* curves at y = +/- oo.
|
|
* \param p A reference point; we refer to a vertical line incident to p.
|
|
* \param cv The compared curve.
|
|
* \param ind MIN_END if we refer to cv's minimal end,
|
|
* MIN_END if we refer to its maximal end.
|
|
* \pre cv's relevant end is defined at y = +/- oo.
|
|
* \return SMALLER if p lies to the left of cv;
|
|
* LARGER if p lies to the right cv;
|
|
* EQUAL in case of an overlap.
|
|
*/
|
|
Comparison_result operator() (const Point_2& p,
|
|
const X_monotone_curve_2& cv,
|
|
Curve_end ind) const
|
|
{
|
|
CGAL_assertion (! cv.is_degenerate());
|
|
CGAL_assertion (cv.is_vertical());
|
|
|
|
Kernel kernel;
|
|
return (kernel.compare_x_at_y_2_object() (p, cv.supp_line()));
|
|
}
|
|
|
|
/*!
|
|
* Compare the relative positions of two curves at y = +/- oo.
|
|
* \param cv1 The first curve.
|
|
* \param ind1 MIN_END if we refer to cv1's minimal end,
|
|
* MIN_END if we refer to its maximal end.
|
|
* \param cv2 The second curve.
|
|
* \param ind2 MIN_END if we refer to cv2's minimal end,
|
|
* MIN_END if we refer to its maximal end.
|
|
* \pre The curves are defined at y = +/- oo.
|
|
* \return SMALLER if cv1 lies to the left of cv2;
|
|
* LARGER if cv1 lies to the right cv2;
|
|
* EQUAL in case of an overlap.
|
|
*/
|
|
Comparison_result operator() (const X_monotone_curve_2& cv1,
|
|
Curve_end ind1,
|
|
const X_monotone_curve_2& cv2,
|
|
Curve_end ind2) const
|
|
{
|
|
CGAL_assertion (! cv1.is_degenerate());
|
|
CGAL_assertion (! cv2.is_degenerate());
|
|
CGAL_assertion (cv1.is_vertical());
|
|
CGAL_assertion (cv2.is_vertical());
|
|
|
|
Kernel kernel;
|
|
return (kernel.compare_x_at_y_2_object() (ORIGIN,
|
|
cv1.supp_line(),
|
|
cv2.supp_line()));
|
|
}
|
|
};
|
|
|
|
/*! Get a Compare_x_2 functor object. */
|
|
Compare_x_2 compare_x_2_object () const
|
|
{
|
|
return Compare_x_2();
|
|
}
|
|
|
|
class Compare_xy_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Compare two points lexigoraphically: by x, then by y.
|
|
* \param p1 The first point.
|
|
* \param p2 The second point.
|
|
* \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2);
|
|
* SMALLER if x(p1) < x(p2), or if x(p1) = x(p2) and y(p1) < y(p2);
|
|
* EQUAL if the two points are equal.
|
|
*/
|
|
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
|
|
{
|
|
Kernel kernel;
|
|
return (kernel.compare_xy_2_object()(p1, p2));
|
|
}
|
|
};
|
|
|
|
/*! Get a Compare_xy_2 functor object. */
|
|
Compare_xy_2 compare_xy_2_object () const
|
|
{
|
|
return Compare_xy_2();
|
|
}
|
|
|
|
class Infinite_in_x_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Check if an end of a given x-monotone curve is infinite at x.
|
|
* \param cv The curve.
|
|
* \param ind MIN_END if we refer to cv's minimal end,
|
|
* MAX_END if we refer to its maximal end.
|
|
* \return MINUS_INFINITY if the curve end lies at x = -oo;
|
|
* FINITE if the curve end has a finite x-coordinate;
|
|
* PLUS_INFINITY if the curve end lies at x = +oo.
|
|
*/
|
|
Infinity_type operator() (const X_monotone_curve_2& cv,
|
|
Curve_end ind) const
|
|
{
|
|
if (ind == MIN_END)
|
|
return (cv.left_infinite_in_x());
|
|
else
|
|
return (cv.right_infinite_in_x());
|
|
}
|
|
};
|
|
|
|
/*! Get an Infinite_in_x_2 functor object. */
|
|
Infinite_in_x_2 infinite_in_x_2_object () const
|
|
{
|
|
return Infinite_in_x_2();
|
|
}
|
|
|
|
class Infinite_in_y_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Check if an end of a given x-monotone curve is infinite at y.
|
|
* \param cv The curve.
|
|
* \param ind MIN_END if we refer to cv's minimal end,
|
|
* MAX_END if we refer to its maximal end.
|
|
* \return MINUS_INFINITY if the curve end lies at y = -oo;
|
|
* FINITE if the curve end has a finite y-coordinate;
|
|
* PLUS_INFINITY if the curve end lies at y = +oo.
|
|
*/
|
|
Infinity_type operator() (const X_monotone_curve_2& cv,
|
|
Curve_end ind) const
|
|
{
|
|
if (ind == MIN_END)
|
|
return (cv.left_infinite_in_y());
|
|
else
|
|
return (cv.right_infinite_in_y());
|
|
}
|
|
};
|
|
|
|
/*! Get an Infinite_in_y_2 functor object. */
|
|
Infinite_in_y_2 infinite_in_y_2_object () const
|
|
{
|
|
return Infinite_in_y_2();
|
|
}
|
|
|
|
class Construct_min_vertex_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Get the left endpoint of the x-monotone curve (segment).
|
|
* \param cv The curve.
|
|
* \pre The left end of cv is a valid (bounded) point.
|
|
* \return The left endpoint.
|
|
*/
|
|
const Point_2& operator() (const X_monotone_curve_2& cv) const
|
|
{
|
|
CGAL_precondition (cv.has_left());
|
|
return (cv.left());
|
|
}
|
|
};
|
|
|
|
/*! Get a Construct_min_vertex_2 functor object. */
|
|
Construct_min_vertex_2 construct_min_vertex_2_object () const
|
|
{
|
|
return Construct_min_vertex_2();
|
|
}
|
|
|
|
class Construct_max_vertex_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Get the right endpoint of the x-monotone curve (segment).
|
|
* \param cv The curve.
|
|
* \pre The right end of cv is a valid (bounded) point.
|
|
* \return The right endpoint.
|
|
*/
|
|
const Point_2& operator() (const X_monotone_curve_2& cv) const
|
|
{
|
|
CGAL_precondition (cv.has_right());
|
|
return (cv.right());
|
|
}
|
|
};
|
|
|
|
/*! Get a Construct_max_vertex_2 functor object. */
|
|
Construct_max_vertex_2 construct_max_vertex_2_object () const
|
|
{
|
|
return Construct_max_vertex_2();
|
|
}
|
|
|
|
class Is_vertical_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Check whether the given x-monotone curve is a vertical segment.
|
|
* \param cv The curve.
|
|
* \return (true) if the curve is a vertical segment; (false) otherwise.
|
|
*/
|
|
bool operator() (const X_monotone_curve_2& cv) const
|
|
{
|
|
CGAL_precondition (! cv.is_degenerate());
|
|
return (cv.is_vertical());
|
|
}
|
|
};
|
|
|
|
/*! Get an Is_vertical_2 functor object. */
|
|
Is_vertical_2 is_vertical_2_object () const
|
|
{
|
|
return Is_vertical_2();
|
|
}
|
|
|
|
class Compare_y_at_x_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Return the location of the given point with respect to the input curve.
|
|
* \param cv The curve.
|
|
* \param p The point.
|
|
* \pre p is in the x-range of cv.
|
|
* \return SMALLER if y(p) < cv(x(p)), i.e. the point is below the curve;
|
|
* LARGER if y(p) > cv(x(p)), i.e. the point is above the curve;
|
|
* EQUAL if p lies on the curve.
|
|
*/
|
|
Comparison_result operator() (const Point_2& p,
|
|
const X_monotone_curve_2& cv) const
|
|
{
|
|
CGAL_precondition (! cv.is_degenerate());
|
|
CGAL_precondition (cv.is_in_x_range (p));
|
|
|
|
Kernel kernel;
|
|
|
|
if (! cv.is_vertical())
|
|
{
|
|
// Compare p with the segment's supporting line.
|
|
return (kernel.compare_y_at_x_2_object()(p, cv.supp_line()));
|
|
}
|
|
else
|
|
{
|
|
// Compare with the vertical segment's end-points.
|
|
typename Kernel::Compare_y_2 compare_y = kernel.compare_y_2_object();
|
|
const Comparison_result res1 =
|
|
cv.has_left() ? compare_y (p, cv.left()) : LARGER;
|
|
const Comparison_result res2 =
|
|
cv.has_right() ? compare_y (p, cv.right()) : SMALLER;
|
|
|
|
if (res1 == res2)
|
|
return (res1);
|
|
else
|
|
return (EQUAL);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Compare the relative y-positions of two curves at x = +/- oo.
|
|
* \param cv1 The first curve.
|
|
* \param cv2 The second curve.
|
|
* \param ind MIN_END if we compare at x = -oo;
|
|
* MAX_END if we compare at x = +oo.
|
|
* \pre The curves are defined at x = +/- oo.
|
|
* \return SMALLER if cv1 lies below cv2;
|
|
* LARGER if cv1 lies above cv2;
|
|
* EQUAL in case of an overlap.
|
|
*/
|
|
Comparison_result operator() (const X_monotone_curve_2& cv1,
|
|
const X_monotone_curve_2& cv2,
|
|
Curve_end ind) const
|
|
{
|
|
// Make sure both curves are defined at x = -oo (or at x = +oo).
|
|
CGAL_precondition ((ind == MIN_END &&
|
|
cv1.left_infinite_in_x() == MINUS_INFINITY &&
|
|
cv2.left_infinite_in_x() == MINUS_INFINITY) ||
|
|
(ind == MAX_END &&
|
|
cv1.right_infinite_in_x() == PLUS_INFINITY &&
|
|
cv2.right_infinite_in_x() == PLUS_INFINITY));
|
|
|
|
// Compare the slopes of the two supporting lines.
|
|
Kernel kernel;
|
|
const Comparison_result res_slopes =
|
|
kernel.compare_slope_2_object() (cv1.supp_line(),
|
|
cv2.supp_line());
|
|
|
|
if (res_slopes == EQUAL)
|
|
{
|
|
// In case the two supporting line are parallel, compare their
|
|
// relative position at x = 0, which is the same as their position
|
|
// at infinity.
|
|
return (kernel.compare_y_at_x_2_object() (ORIGIN,
|
|
cv1.supp_line(),
|
|
cv2.supp_line()));
|
|
}
|
|
|
|
if (ind == MIN_END)
|
|
// Flip the slope result if we compare at x = -oo:
|
|
return ((res_slopes == LARGER) ? SMALLER : LARGER);
|
|
|
|
// If we compare at x = +oo, the slope result is what we need:
|
|
return (res_slopes);
|
|
}
|
|
};
|
|
|
|
/*! Get a Compare_y_at_x_2 functor object. */
|
|
Compare_y_at_x_2 compare_y_at_x_2_object () const
|
|
{
|
|
return Compare_y_at_x_2();
|
|
}
|
|
|
|
class Compare_y_at_x_left_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Compare the y value of two x-monotone curves immediately to the left
|
|
* of their intersection point.
|
|
* \param cv1 The first curve.
|
|
* \param cv2 The second curve.
|
|
* \param p The intersection point.
|
|
* \pre The point p lies on both curves, and both of them must be also be
|
|
* defined (lexicographically) to its left.
|
|
* \return The relative position of cv1 with respect to cv2 immdiately to
|
|
* the left of p: SMALLER, LARGER or EQUAL.
|
|
*/
|
|
Comparison_result operator() (const X_monotone_curve_2& cv1,
|
|
const X_monotone_curve_2& cv2,
|
|
const Point_2& p) const
|
|
{
|
|
CGAL_precondition (! cv1.is_degenerate());
|
|
CGAL_precondition (! cv2.is_degenerate());
|
|
|
|
Kernel kernel;
|
|
|
|
// Make sure that p lies on both curves, and that both are defined to its
|
|
// left (so their left endpoint is lexicographically smaller than p).
|
|
CGAL_precondition_code (
|
|
typename Kernel::Compare_xy_2 compare_xy =
|
|
kernel.compare_xy_2_object();
|
|
);
|
|
|
|
CGAL_precondition
|
|
(Segment_assertions::_assert_is_point_on (p, cv1,
|
|
Has_exact_division()) &&
|
|
Segment_assertions::_assert_is_point_on (p, cv2,
|
|
Has_exact_division()));
|
|
|
|
CGAL_precondition ((! cv1.has_left() ||
|
|
compare_xy(cv1.left(), p) == SMALLER) &&
|
|
(! cv2.has_left() ||
|
|
compare_xy(cv2.left(), p) == SMALLER));
|
|
|
|
// Compare the slopes of the two segments to determine thir relative
|
|
// position immediately to the left of q.
|
|
// Notice we use the supporting lines in order to compare the slopes,
|
|
// and that we swap the order of the curves in order to obtain the
|
|
// correct result to the left of p.
|
|
return (kernel.compare_slope_2_object()(cv2.supp_line(),
|
|
cv1.supp_line()));
|
|
}
|
|
};
|
|
|
|
/*! Get a Compare_y_at_x_left_2 functor object. */
|
|
Compare_y_at_x_left_2 compare_y_at_x_left_2_object () const
|
|
{
|
|
return Compare_y_at_x_left_2();
|
|
}
|
|
|
|
class Compare_y_at_x_right_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Compare the y value of two x-monotone curves immediately to the right
|
|
* of their intersection point.
|
|
* \param cv1 The first curve.
|
|
* \param cv2 The second curve.
|
|
* \param p The intersection point.
|
|
* \pre The point p lies on both curves, and both of them must be also be
|
|
* defined (lexicographically) to its right.
|
|
* \return The relative position of cv1 with respect to cv2 immdiately to
|
|
* the right of p: SMALLER, LARGER or EQUAL.
|
|
*/
|
|
Comparison_result operator() (const X_monotone_curve_2& cv1,
|
|
const X_monotone_curve_2& cv2,
|
|
const Point_2& p) const
|
|
{
|
|
CGAL_precondition (! cv1.is_degenerate());
|
|
CGAL_precondition (! cv2.is_degenerate());
|
|
|
|
Kernel kernel;
|
|
|
|
// Make sure that p lies on both curves, and that both are defined to its
|
|
// right (so their right endpoint is lexicographically larger than p).
|
|
CGAL_precondition_code (
|
|
typename Kernel::Compare_xy_2 compare_xy =
|
|
kernel.compare_xy_2_object();
|
|
);
|
|
|
|
CGAL_precondition
|
|
(Segment_assertions::_assert_is_point_on (p, cv1,
|
|
Has_exact_division()) &&
|
|
Segment_assertions::_assert_is_point_on (p, cv2,
|
|
Has_exact_division()));
|
|
|
|
CGAL_precondition ((! cv1.has_right() ||
|
|
compare_xy(cv1.right(), p) == LARGER) &&
|
|
(! cv2.has_right() ||
|
|
compare_xy(cv2.right(), p) == LARGER));
|
|
|
|
// Compare the slopes of the two segments to determine thir relative
|
|
// position immediately to the left of q.
|
|
// Notice we use the supporting lines in order to compare the slopes.
|
|
return (kernel.compare_slope_2_object()(cv1.supp_line(),
|
|
cv2.supp_line()));
|
|
}
|
|
};
|
|
|
|
/*! Get a Compare_y_at_x_right_2 functor object. */
|
|
Compare_y_at_x_right_2 compare_y_at_x_right_2_object () const
|
|
{
|
|
return Compare_y_at_x_right_2();
|
|
}
|
|
|
|
class Equal_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Check if the two x-monotone curves are the same (have the same graph).
|
|
* \param cv1 The first curve.
|
|
* \param cv2 The second curve.
|
|
* \return (true) if the two curves are the same; (false) otherwise.
|
|
*/
|
|
bool operator() (const X_monotone_curve_2& cv1,
|
|
const X_monotone_curve_2& cv2) const
|
|
{
|
|
CGAL_precondition (! cv1.is_degenerate());
|
|
CGAL_precondition (! cv2.is_degenerate());
|
|
|
|
Kernel kernel;
|
|
typename Kernel::Equal_2 equal = kernel.equal_2_object();
|
|
|
|
// Check that the two supporting lines are the same.
|
|
if (! equal (cv1.supp_line(),
|
|
cv2.supp_line()) &&
|
|
! equal (cv1.supp_line(),
|
|
kernel.construct_opposite_line_2_object()(cv2.supp_line())))
|
|
{
|
|
return (false);
|
|
}
|
|
|
|
// Check that either the two left endpoints are at infinity, or they
|
|
// are bounded and equal.
|
|
if ((cv1.has_left() != cv2.has_left()) ||
|
|
(cv1.has_left() && ! equal (cv1.left(), cv2.left())))
|
|
{
|
|
return (false);
|
|
}
|
|
|
|
// Check that either the two right endpoints are at infinity, or they
|
|
// are bounded and equal.
|
|
return ((cv1.has_right() == cv2.has_right()) &&
|
|
(! cv1.has_right() || equal (cv1.right(), cv2.right())));
|
|
}
|
|
|
|
/*!
|
|
* Check if the two points are the same.
|
|
* \param p1 The first point.
|
|
* \param p2 The second point.
|
|
* \return (true) if the two point are the same; (false) otherwise.
|
|
*/
|
|
bool operator() (const Point_2& p1, const Point_2& p2) const
|
|
{
|
|
Kernel kernel;
|
|
return (kernel.equal_2_object()(p1, p2));
|
|
}
|
|
};
|
|
|
|
/*! Get an Equal_2 functor object. */
|
|
Equal_2 equal_2_object () const
|
|
{
|
|
return Equal_2();
|
|
}
|
|
//@}
|
|
|
|
/// \name Functor definitions for supporting intersections.
|
|
//@{
|
|
|
|
class Make_x_monotone_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Cut the given curve into x-monotone subcurves and insert them into the
|
|
* given output iterator. As segments are always x_monotone, only one
|
|
* object will be contained in the iterator.
|
|
* \param cv The curve.
|
|
* \param oi The output iterator, whose value-type is Object. The output
|
|
* object is a wrapper of either an X_monotone_curve_2, or - in
|
|
* case the input segment is degenerate - a Point_2 object.
|
|
* \return The past-the-end iterator.
|
|
*/
|
|
template<class OutputIterator>
|
|
OutputIterator operator() (const Curve_2& cv, OutputIterator oi) const
|
|
{
|
|
if (! cv.is_degenerate())
|
|
{
|
|
// Wrap the segment with an object.
|
|
*oi = make_object (cv);
|
|
}
|
|
else
|
|
{
|
|
// The segment is a degenerate point - wrap it with an object.
|
|
*oi = make_object (cv.right());
|
|
}
|
|
++oi;
|
|
return (oi);
|
|
}
|
|
};
|
|
|
|
/*! Get a Make_x_monotone_2 functor object. */
|
|
Make_x_monotone_2 make_x_monotone_2_object () const
|
|
{
|
|
return Make_x_monotone_2();
|
|
}
|
|
|
|
class Split_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Split a given x-monotone curve at a given point into two sub-curves.
|
|
* \param cv The curve to split
|
|
* \param p The split point.
|
|
* \param c1 Output: The left resulting subcurve (p is its right endpoint).
|
|
* \param c2 Output: The right resulting subcurve (p is its left endpoint).
|
|
* \pre p lies on cv but is not one of its end-points.
|
|
*/
|
|
void operator() (const X_monotone_curve_2& cv, const Point_2& p,
|
|
X_monotone_curve_2& c1, X_monotone_curve_2& c2) const
|
|
{
|
|
CGAL_precondition (! cv.is_degenerate());
|
|
|
|
// Make sure that p lies on the interior of the curve.
|
|
CGAL_precondition_code (
|
|
Kernel kernel;
|
|
typename Kernel::Compare_xy_2 compare_xy =
|
|
kernel.compare_xy_2_object();
|
|
);
|
|
|
|
CGAL_precondition
|
|
(Segment_assertions::_assert_is_point_on (p, cv,
|
|
Has_exact_division()) &&
|
|
(! cv.has_left() || compare_xy(cv.left(), p) == SMALLER) &&
|
|
(! cv.has_right() || compare_xy(cv.right(), p) == LARGER));
|
|
|
|
// Perform the split.
|
|
c1 = cv;
|
|
c1.set_right (p);
|
|
|
|
c2 = cv;
|
|
c2.set_left (p);
|
|
|
|
return;
|
|
}
|
|
};
|
|
|
|
/*! Get a Split_2 functor object. */
|
|
Split_2 split_2_object () const
|
|
{
|
|
return Split_2();
|
|
}
|
|
|
|
class Intersect_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Find the intersections of the two given curves and insert them into the
|
|
* given output iterator. As two segments may itersect only once, only a
|
|
* single intersection will be contained in the iterator.
|
|
* \param cv1 The first curve.
|
|
* \param cv2 The second curve.
|
|
* \param oi The output iterator.
|
|
* \return The past-the-end iterator.
|
|
*/
|
|
template<class OutputIterator>
|
|
OutputIterator operator() (const X_monotone_curve_2& cv1,
|
|
const X_monotone_curve_2& cv2,
|
|
OutputIterator oi) const
|
|
{
|
|
CGAL_precondition (! cv1.is_degenerate());
|
|
CGAL_precondition (! cv2.is_degenerate());
|
|
|
|
// Intersect the two supporting lines.
|
|
Kernel kernel;
|
|
CGAL::Object obj = kernel.intersect_2_object()(cv1.supp_line(),
|
|
cv2.supp_line());
|
|
|
|
if (obj.is_empty())
|
|
{
|
|
// The supporting line are parallel lines and do not intersect:
|
|
return (oi);
|
|
}
|
|
|
|
// Check if we have a single intersection point.
|
|
const Point_2 *ip = object_cast<Point_2> (&obj);
|
|
|
|
if (ip != NULL)
|
|
{
|
|
// Check if the intersection point ip lies on both segments.
|
|
const bool ip_on_cv1 = cv1.is_vertical() ? cv1.is_in_y_range(*ip) :
|
|
cv1.is_in_x_range(*ip);
|
|
|
|
if (ip_on_cv1)
|
|
{
|
|
const bool ip_on_cv2 = cv2.is_vertical() ? cv2.is_in_y_range(*ip) :
|
|
cv2.is_in_x_range(*ip);
|
|
|
|
if (ip_on_cv2)
|
|
{
|
|
// Create a pair representing the point with its multiplicity,
|
|
// which is always 1 for line segments.
|
|
std::pair<Point_2, unsigned int> ip_mult (*ip, 1);
|
|
*oi = make_object (ip_mult);
|
|
oi++;
|
|
}
|
|
}
|
|
return (oi);
|
|
}
|
|
|
|
// In this case, the two supporting lines overlap.
|
|
// We start with the entire cv1 curve as the overlapping subcurve,
|
|
// then clip it to form the true overlapping curve.
|
|
typename Kernel::Compare_xy_2 compare_xy = kernel.compare_xy_2_object();
|
|
X_monotone_curve_2 ovlp = cv1;
|
|
|
|
if (cv2.has_left())
|
|
{
|
|
// If the left endpoint of cv2 is to the right of cv1's left endpoint,
|
|
// clip the overlapping subcurve.
|
|
if (! cv1.has_left())
|
|
{
|
|
ovlp.set_left (cv2.left(), false);
|
|
}
|
|
else
|
|
{
|
|
if (compare_xy (cv1.left(), cv2.left()) == SMALLER)
|
|
ovlp.set_left (cv2.left(), false);
|
|
}
|
|
}
|
|
|
|
if (cv2.has_right())
|
|
{
|
|
// If the right endpoint of cv2 is to the left of cv1's right endpoint,
|
|
// clip the overlapping subcurve.
|
|
if (! cv1.has_right())
|
|
{
|
|
ovlp.set_right (cv2.right(), false);
|
|
}
|
|
else
|
|
{
|
|
if (compare_xy (cv1.right(), cv2.right()) == LARGER)
|
|
ovlp.set_right (cv2.right(), false);
|
|
}
|
|
}
|
|
|
|
// Examine the resulting subcurve.
|
|
Comparison_result res = SMALLER;
|
|
|
|
if (ovlp.has_left() && ovlp.has_right())
|
|
res = compare_xy (ovlp.left(), ovlp.right());
|
|
|
|
if (res == SMALLER)
|
|
{
|
|
// We have discovered a true overlapping subcurve:
|
|
*oi = make_object (ovlp);
|
|
oi++;
|
|
}
|
|
else if (res == EQUAL)
|
|
{
|
|
// The two objects have the same supporting line, but they just share
|
|
// a common endpoint. Thus we have an intersection point, but we leave
|
|
// the multiplicity of this point undefined.
|
|
std::pair<Point_2, unsigned int> ip_mult (ovlp.left(), 0);
|
|
*oi = make_object (ip_mult);
|
|
oi++;
|
|
}
|
|
|
|
return (oi);
|
|
}
|
|
};
|
|
|
|
/*! Get an Intersect_2 functor object. */
|
|
Intersect_2 intersect_2_object () const
|
|
{
|
|
return Intersect_2();
|
|
}
|
|
|
|
class Are_mergeable_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Check whether it is possible to merge two given x-monotone curves.
|
|
* \param cv1 The first curve.
|
|
* \param cv2 The second curve.
|
|
* \return (true) if the two curves are mergeable - if they are supported
|
|
* by the same line and share a common endpoint; (false) otherwise.
|
|
*/
|
|
bool operator() (const X_monotone_curve_2& cv1,
|
|
const X_monotone_curve_2& cv2) const
|
|
{
|
|
CGAL_precondition (! cv1.is_degenerate());
|
|
CGAL_precondition (! cv2.is_degenerate());
|
|
|
|
Kernel kernel;
|
|
typename Kernel::Equal_2 equal = kernel.equal_2_object();
|
|
|
|
// Check if the two curves have the same supporting line.
|
|
if (! equal (cv1.supp_line(), cv2.supp_line()) &&
|
|
! equal (cv1.supp_line(),
|
|
kernel.construct_opposite_line_2_object()(cv2.supp_line())))
|
|
return (false);
|
|
|
|
// Check if the left endpoint of one curve is the right endpoint of the
|
|
// other.
|
|
return ((cv1.has_right() && cv2.has_left() &&
|
|
equal (cv1.right(), cv2.left())) ||
|
|
(cv2.has_right() && cv1.has_left() &&
|
|
equal (cv2.right(), cv1.left())));
|
|
}
|
|
};
|
|
|
|
/*! Get an Are_mergeable_2 functor object. */
|
|
Are_mergeable_2 are_mergeable_2_object () const
|
|
{
|
|
return Are_mergeable_2();
|
|
}
|
|
|
|
class Merge_2
|
|
{
|
|
public:
|
|
/*!
|
|
* Merge two given x-monotone curves into a single curve (segment).
|
|
* \param cv1 The first curve.
|
|
* \param cv2 The second curve.
|
|
* \param c Output: The merged curve.
|
|
* \pre The two curves are mergeable, that is they are supported by the
|
|
* same line and share a common endpoint.
|
|
*/
|
|
void operator() (const X_monotone_curve_2& cv1,
|
|
const X_monotone_curve_2& cv2,
|
|
X_monotone_curve_2& c) const
|
|
{
|
|
CGAL_precondition (! cv1.is_degenerate());
|
|
CGAL_precondition (! cv2.is_degenerate());
|
|
|
|
Kernel kernel;
|
|
typename Kernel::Equal_2 equal = kernel.equal_2_object();
|
|
|
|
CGAL_precondition
|
|
(equal (cv1.supp_line(),
|
|
cv2.supp_line()) ||
|
|
equal (cv1.supp_line(),
|
|
kernel.construct_opposite_line_2_object()(cv2.supp_line())));
|
|
|
|
// Check which curve extends to the right of the other.
|
|
if (cv1.has_right() && cv2.has_left() &&
|
|
equal (cv1.right(), cv2.left()))
|
|
{
|
|
// cv2 extends cv1 to the right.
|
|
c = cv1;
|
|
|
|
if (cv2.has_right())
|
|
c.set_right (cv2.right());
|
|
else
|
|
c.set_right(); // Unbounded endpoint.
|
|
}
|
|
else
|
|
{
|
|
CGAL_precondition (cv2.has_right() && cv1.has_left() &&
|
|
equal (cv2.right(), cv1.left()));
|
|
|
|
// cv1 extends cv2 to the right.
|
|
c = cv2;
|
|
|
|
if (cv1.has_right())
|
|
c.set_right (cv1.right());
|
|
else
|
|
c.set_right(); // Unbounded endpoint.
|
|
}
|
|
|
|
return;
|
|
}
|
|
};
|
|
|
|
/*! Get a Merge_2 functor object. */
|
|
Merge_2 merge_2_object () const
|
|
{
|
|
return Merge_2();
|
|
}
|
|
//@}
|
|
|
|
/// \name Functor definitions for the landmarks point-location strategy.
|
|
//@{
|
|
typedef double Approximate_number_type;
|
|
|
|
class Approximate_2
|
|
{
|
|
public:
|
|
|
|
/*!
|
|
* Return an approximation of a point coordinate.
|
|
* \param p The exact point.
|
|
* \param i The coordinate index (either 0 or 1).
|
|
* \pre i is either 0 or 1.
|
|
* \return An approximation of p's x-coordinate (if i == 0), or an
|
|
* approximation of p's y-coordinate (if i == 1).
|
|
*/
|
|
Approximate_number_type operator() (const Point_2& p,
|
|
int i) const
|
|
{
|
|
CGAL_precondition (i == 0 || i == 1);
|
|
|
|
if (i == 0)
|
|
return (CGAL::to_double(p.x()));
|
|
else
|
|
return (CGAL::to_double(p.y()));
|
|
}
|
|
};
|
|
|
|
/*! Get an Approximate_2 functor object. */
|
|
Approximate_2 approximate_2_object () const
|
|
{
|
|
return Approximate_2();
|
|
}
|
|
|
|
class Construct_x_monotone_curve_2
|
|
{
|
|
public:
|
|
|
|
/*!
|
|
* Return an x-monotone curve connecting the two given endpoints.
|
|
* \param p The first point.
|
|
* \param q The second point.
|
|
* \pre p and q must not be the same.
|
|
* \return A segment connecting p and q.
|
|
*/
|
|
X_monotone_curve_2 operator() (const Point_2& p,
|
|
const Point_2& q) const
|
|
{
|
|
Kernel kernel;
|
|
Segment_2 seg = kernel.construct_segment_2_object() (p, q);
|
|
|
|
return (X_monotone_curve_2 (seg));
|
|
}
|
|
};
|
|
|
|
/*! Get a Construct_x_monotone_curve_2 functor object. */
|
|
Construct_x_monotone_curve_2 construct_x_monotone_curve_2_object () const
|
|
{
|
|
return Construct_x_monotone_curve_2();
|
|
}
|
|
//@}
|
|
|
|
};
|
|
|
|
/*!
|
|
* \class A representation of a segment, as used by the Arr_segment_traits_2
|
|
* traits-class.
|
|
*/
|
|
template <class Kernel_>
|
|
class Arr_linear_object_2 :
|
|
public Arr_linear_traits_2<Kernel_>::_Linear_object_cached_2
|
|
{
|
|
typedef typename Arr_linear_traits_2<Kernel_>::_Linear_object_cached_2
|
|
Base;
|
|
|
|
public:
|
|
|
|
typedef Kernel_ Kernel;
|
|
|
|
typedef typename Kernel::Point_2 Point_2;
|
|
typedef typename Kernel::Segment_2 Segment_2;
|
|
typedef typename Kernel::Ray_2 Ray_2;
|
|
typedef typename Kernel::Line_2 Line_2;
|
|
|
|
public:
|
|
|
|
/*!
|
|
* Default constructor.
|
|
*/
|
|
Arr_linear_object_2 () :
|
|
Base()
|
|
{}
|
|
|
|
/*!
|
|
* Constructor from two points.
|
|
* \param s The source point.
|
|
* \param t The target point.
|
|
*/
|
|
Arr_linear_object_2(const Point_2& s, const Point_2& t):
|
|
Base(s, t)
|
|
{}
|
|
|
|
/*!
|
|
* Constructor from a point.
|
|
* \param pt The point.
|
|
*/
|
|
Arr_linear_object_2 (const Point_2& pt) :
|
|
Base (pt)
|
|
{}
|
|
|
|
/*!
|
|
* Constructor from a segment.
|
|
* \param seg The segment.
|
|
* \pre The segment is not degenerate.
|
|
*/
|
|
Arr_linear_object_2 (const Segment_2& seg) :
|
|
Base (seg)
|
|
{}
|
|
|
|
/*!
|
|
* Constructor from a ray.
|
|
* \param ray The segment.
|
|
* \pre The ray is not degenerate.
|
|
*/
|
|
Arr_linear_object_2 (const Ray_2& ray) :
|
|
Base (ray)
|
|
{}
|
|
|
|
/*!
|
|
* Constructor from a line.
|
|
* \param line The line.
|
|
* \pre The line is not degenerate.
|
|
*/
|
|
Arr_linear_object_2 (const Line_2& line) :
|
|
Base (line)
|
|
{}
|
|
|
|
/*!
|
|
* Check if the object is actually a point.
|
|
*/
|
|
bool is_point () const
|
|
{
|
|
return (this->is_degen);
|
|
}
|
|
|
|
/*!
|
|
* Cast to a point.
|
|
* \pre The linear object is really a point.
|
|
*/
|
|
Point_2 point () const
|
|
{
|
|
CGAL_precondition (is_point());
|
|
return (this->ps);
|
|
}
|
|
|
|
/*!
|
|
* Check if the object is actually a segment.
|
|
*/
|
|
bool is_segment () const
|
|
{
|
|
return (! this->is_degen && this->has_source && this->has_target);
|
|
}
|
|
|
|
/*!
|
|
* Cast to a segment.
|
|
* \pre The linear object is really a segment.
|
|
*/
|
|
Segment_2 segment () const
|
|
{
|
|
CGAL_precondition (is_segment());
|
|
|
|
Kernel kernel;
|
|
Segment_2 seg = kernel.construct_segment_2_object() (this->ps, this->pt);
|
|
return (seg);
|
|
}
|
|
|
|
/*!
|
|
* Check if the object is actually a ray.
|
|
*/
|
|
bool is_ray () const
|
|
{
|
|
return (! this->is_degen &&
|
|
(this->has_source != this->has_target));
|
|
}
|
|
|
|
/*!
|
|
* Cast to a ray.
|
|
* \pre The linear object is really a ray.
|
|
*/
|
|
Ray_2 ray () const
|
|
{
|
|
CGAL_precondition (is_ray());
|
|
|
|
Kernel kernel;
|
|
Ray_2 ray;
|
|
|
|
if (this->has_source)
|
|
ray = kernel.construct_ray_2_object() (this->ps, this->l);
|
|
else
|
|
ray = kernel.construct_ray_2_object()
|
|
(this->pt,
|
|
kernel.construct_opposite_line_2_object()(this->l));
|
|
|
|
return (ray);
|
|
}
|
|
|
|
/*!
|
|
* Check if the object is actually a line.
|
|
*/
|
|
bool is_line () const
|
|
{
|
|
return (! this->is_degen && ! this->has_source && ! this->has_target);
|
|
}
|
|
|
|
/*!
|
|
* Cast to a line.
|
|
* \pre The linear object is really a line.
|
|
*/
|
|
Line_2 line () const
|
|
{
|
|
CGAL_precondition (is_line());
|
|
return (this->l);
|
|
}
|
|
|
|
/*!
|
|
* Get the supporting line.
|
|
* \pre The object is not a point.
|
|
*/
|
|
const Line_2& supporting_line () const
|
|
{
|
|
CGAL_precondition (! this->is_degen);
|
|
return (this->l);
|
|
}
|
|
|
|
/*!
|
|
* Get the source point.
|
|
* \pre The object is a point, a segment or a ray.
|
|
*/
|
|
const Point_2& source() const
|
|
{
|
|
CGAL_precondition (! is_line());
|
|
|
|
if (this->is_degen)
|
|
return (this->ps); // For a point.
|
|
|
|
if (this->has_source)
|
|
return (this->ps); // For a segment or a ray.
|
|
else
|
|
return (this->pt); // For a "flipped" ray.
|
|
}
|
|
|
|
/*!
|
|
* Get the target point.
|
|
* \pre The object is a point or a segment.
|
|
*/
|
|
const Point_2& target() const
|
|
{
|
|
CGAL_precondition (! is_line() && ! is_ray());
|
|
|
|
return (this->pt);
|
|
}
|
|
|
|
/*!
|
|
* Create a bounding box for the linear object.
|
|
*/
|
|
Bbox_2 bbox() const
|
|
{
|
|
CGAL_precondition(this->is_segment());
|
|
Kernel kernel;
|
|
Segment_2 seg = kernel.construct_segment_2_object() (this->ps, this->pt);
|
|
return (kernel.construct_bbox_2_object() (seg));
|
|
}
|
|
};
|
|
|
|
/*!
|
|
* Exporter for the segment class used by the traits-class.
|
|
*/
|
|
template <class Kernel, class OutputStream>
|
|
OutputStream& operator<< (OutputStream& os,
|
|
const Arr_linear_object_2<Kernel>& lobj)
|
|
{
|
|
// Print a letter identifying the object type, then the object itself.
|
|
if (lobj.is_point())
|
|
os << " P " << lobj.point();
|
|
else if (lobj.is_segment())
|
|
os << " S " << lobj.segment();
|
|
else if (lobj.is_ray())
|
|
os << " R " << lobj.ray();
|
|
else
|
|
os << " L " << lobj.line();
|
|
|
|
return (os);
|
|
}
|
|
|
|
/*!
|
|
* Importer for the segment class used by the traits-class.
|
|
*/
|
|
template <class Kernel, class InputStream>
|
|
InputStream& operator>> (InputStream& is, Arr_linear_object_2<Kernel>& lobj)
|
|
{
|
|
// Read the object type.
|
|
char c;
|
|
|
|
do
|
|
{
|
|
is >> c;
|
|
} while ((c != 'P' && c != 'p') && (c != 'S' && c != 's') &&
|
|
(c != 'R' && c != 'r') && (c != 'L' && c != 'l'));
|
|
|
|
// Read the object accordingly.
|
|
if (c == 'P' || c == 'p')
|
|
{
|
|
typename Kernel::Point_2 pt;
|
|
is >> pt;
|
|
lobj = pt;
|
|
}
|
|
else if (c == 'S' || c == 's')
|
|
{
|
|
typename Kernel::Segment_2 seg;
|
|
is >> seg;
|
|
lobj = seg;
|
|
}
|
|
else if (c == 'R' || c == 'r')
|
|
{
|
|
typename Kernel::Ray_2 ray;
|
|
is >> ray;
|
|
lobj = ray;
|
|
}
|
|
else
|
|
{
|
|
typename Kernel::Line_2 line;
|
|
is >> line;
|
|
lobj = line;
|
|
}
|
|
|
|
return (is);
|
|
}
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif
|
|
|