cgal/Arrangement_2/include/CGAL/Arr_segment_traits_2.h

1210 lines
34 KiB
C++

// Copyright (c) 2005 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
// Efi Fogel <efif@post.tau.ac.il>
#ifndef CGAL_ARR_SEGMENT_TRAITS_2_H
#define CGAL_ARR_SEGMENT_TRAITS_2_H
/*! \file
* The segment traits-class for the arrangement package.
*/
#include <CGAL/tags.h>
#include <CGAL/representation_tags.h>
#include <CGAL/intersections.h>
#include <CGAL/Number_type_traits.h>
#include <CGAL/Arr_traits_2/Segment_assertions.h>
#include <fstream>
CGAL_BEGIN_NAMESPACE
template <class Kernel_> class Arr_segment_2;
/*!
* \class A traits class for maintaining an arrangement of segments, aoviding
* cascading of computations as much as possible.
*
* The class is derived from the parameterized kernel to extend the traits
* with all the types and operations supported by the kernel. This makes it
* possible to use the traits class for data structures that extends the
* Arrangement_2 type and require objects and operations supported by the
* kernel, but not defined in this derived class.
*/
template <class Kernel_>
class Arr_segment_traits_2 : public Kernel_
{
friend class Arr_segment_2<Kernel_>;
public:
typedef Kernel_ Kernel;
typedef typename Kernel::FT FT;
typedef typename Number_type_traits<FT>::Has_exact_division
Has_exact_division;
// Category tags:
typedef Tag_true Has_left_category;
typedef Tag_true Has_merge_category;
typedef Tag_false Has_infinite_category;
typedef typename Kernel::Line_2 Line_2;
typedef CGAL::Segment_assertions<Arr_segment_traits_2<Kernel> >
Segment_assertions;
/*!
* \class Representation of a segement with cached data.
*/
class _Segment_cached_2
{
public:
typedef typename Kernel::Line_2 Line_2;
typedef typename Kernel::Segment_2 Segment_2;
typedef typename Kernel::Point_2 Point_2;
protected:
Line_2 l; // The line that supports the segment.
Point_2 ps; // The source point of the segment.
Point_2 pt; // The target point of the segment.
bool is_pt_max; // Is the target (lexicographically) larger
// than the source.
bool is_vert; // Is this a vertical segment.
bool is_degen; // Is the segment degenerate (a single point).
public:
/*!
* Default constructor.
*/
_Segment_cached_2 () :
is_vert(false),
is_degen(true)
{}
/*!
* Constructor from a segment.
* \param seg The segment.
*/
_Segment_cached_2 (const Segment_2& seg)
{
Kernel kernel;
typename Kernel_::Construct_vertex_2
construct_vertex = kernel.construct_vertex_2_object();
ps = construct_vertex(seg, 0);
pt = construct_vertex(seg, 1);
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
is_degen = (res == EQUAL);
is_pt_max = (res == SMALLER);
if (! is_degen)
{
l = kernel.construct_line_2_object()(seg);
is_vert = kernel.is_vertical_2_object()(seg);
}
}
/*!
* Construct a segment from two end-points.
* \param source The source point.
* \param target The target point.
*/
_Segment_cached_2 (const Point_2& source, const Point_2& target) :
ps (source),
pt (target)
{
Kernel kernel;
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
is_degen = (res == EQUAL);
is_pt_max = (res == SMALLER);
if (! is_degen)
{
l = kernel.construct_line_2_object()(source, target);
is_vert = kernel.is_vertical_2_object()(l);
}
}
/*!
* Construct a segment from two end-points on a supporting line.
* \param supp_line The supporting line.
* \param source The source point.
* \param target The target point.
* \pre The two endpoints are not the same and both lie on the given line.
*/
_Segment_cached_2 (const Line_2& supp_line,
const Point_2& source, const Point_2& target) :
l (supp_line),
ps (source),
pt (target)
{
Kernel kernel;
CGAL_precondition(
Segment_assertions::_assert_is_point_on(source, l,
Has_exact_division()) &&
Segment_assertions::_assert_is_point_on(target,l,
Has_exact_division())
);
is_vert = kernel.is_vertical_2_object()(l);
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
CGAL_precondition (res != EQUAL);
is_degen = false;
is_pt_max = (res == SMALLER);
}
/*!
* Assignment operator.
* \param seg the source segment to copy from
*/
const _Segment_cached_2& operator= (const Segment_2& seg)
{
Kernel kernel;
typename Kernel_::Construct_vertex_2
construct_vertex = kernel.construct_vertex_2_object();
ps = construct_vertex(seg, 0);
pt = construct_vertex(seg, 1);
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
is_degen = (res == EQUAL);
is_pt_max = (res == SMALLER);
if (! is_degen)
{
l = kernel.construct_line_2_object()(seg);
is_vert = kernel.is_vertical_2_object()(seg);
}
return (*this);
}
/*!
* Get the (lexicographically) left endpoint.
*/
const Point_2& left () const
{
return (is_pt_max ? ps : pt);
}
/*!
* Set the (lexicographically) left endpoint.
* \param p The point to set.
* \pre p lies on the supporting line to the left of the right endpoint.
*/
void set_left (const Point_2& p)
{
CGAL_precondition (! is_degen);
CGAL_precondition_code (
Kernel kernel;
);
CGAL_precondition
(Segment_assertions::_assert_is_point_on (p, l,
Has_exact_division()) &&
kernel.compare_xy_2_object() (p, right()) == SMALLER);
if (is_pt_max)
ps = p;
else
pt = p;
}
/*!
* Get the (lexicographically) right endpoint.
*/
const Point_2& right () const
{
return (is_pt_max ? pt : ps);
}
/*!
* Set the (lexicographically) right endpoint.
* \param p The point to set.
* \pre p lies on the supporting line to the right of the left endpoint.
*/
void set_right (const Point_2& p)
{
CGAL_precondition (! is_degen);
CGAL_precondition_code (
Kernel kernel;
);
CGAL_precondition
(Segment_assertions::_assert_is_point_on (p, l,
Has_exact_division()) &&
kernel.compare_xy_2_object() (p, left()) == LARGER);
if (is_pt_max)
pt = p;
else
ps = p;
}
/*!
* Get the supporting line.
*/
const Line_2& line () const
{
CGAL_precondition (! is_degen);
return (l);
}
/*!
* Check if the curve is vertical.
*/
bool is_vertical () const
{
CGAL_precondition (! is_degen);
return (is_vert);
}
/*!
* Check if the curve is degenerate.
*/
bool is_degenerate () const
{
return (is_degen);
}
/*!
* Check if the curve is directed lexicographic from left to right
*/
bool is_directed_right () const
{
return (is_pt_max);
}
/*!
* Check if the given point is in the x-range of the segment.
* \param p The query point.
* \return (true) is in the x-range of the segment; (false) if it is not.
*/
bool is_in_x_range (const Point_2& p) const
{
Kernel kernel;
typename Kernel_::Compare_x_2 compare_x = kernel.compare_x_2_object();
const Comparison_result res1 = compare_x (p, left());
if (res1 == SMALLER)
return (false);
else if (res1 == EQUAL)
return (true);
const Comparison_result res2 = compare_x (p, right());
return (res2 != LARGER);
}
/*!
* Check if the given point is in the y-range of the segment.
* \param p The query point.
* \return (true) is in the y-range of the segment; (false) if it is not.
*/
bool is_in_y_range (const Point_2& p) const
{
Kernel kernel;
typename Kernel_::Compare_y_2 compare_y = kernel.compare_y_2_object();
const Comparison_result res1 = compare_y (p, left());
if (res1 == SMALLER)
return (false);
else if (res1 == EQUAL)
return (true);
const Comparison_result res2 = compare_y (p, right());
return (res2 != LARGER);
}
};
public:
// Traits objects
typedef typename Kernel::Point_2 Point_2;
typedef Arr_segment_2<Kernel> X_monotone_curve_2;
typedef Arr_segment_2<Kernel> Curve_2;
public:
/*!
* Default constructor.
*/
Arr_segment_traits_2 ()
{}
/// \name Basic functor definitions.
//@{
class Compare_x_2
{
public:
/*!
* Compare the x-coordinates of two points.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2);
* SMALLER if x(p1) < x(p2);
* EQUAL if x(p1) = x(p2).
*/
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
{
Kernel kernel;
return (kernel.compare_x_2_object()(p1, p2));
}
};
/*! Get a Compare_x_2 functor object. */
Compare_x_2 compare_x_2_object () const
{
return Compare_x_2();
}
class Compare_xy_2
{
public:
/*!
* Compare two points lexigoraphically: by x, then by y.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2);
* SMALLER if x(p1) < x(p2), or if x(p1) = x(p2) and y(p1) < y(p2);
* EQUAL if the two points are equal.
*/
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
{
Kernel kernel;
return (kernel.compare_xy_2_object()(p1, p2));
}
};
/*! Get a Compare_xy_2 functor object. */
Compare_xy_2 compare_xy_2_object () const
{
return Compare_xy_2();
}
class Construct_min_vertex_2
{
public:
/*!
* Get the left endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \return The left endpoint.
*/
const Point_2& operator() (const X_monotone_curve_2& cv) const
{
return (cv.left());
}
};
/*! Get a Construct_min_vertex_2 functor object. */
Construct_min_vertex_2 construct_min_vertex_2_object () const
{
return Construct_min_vertex_2();
}
class Construct_max_vertex_2
{
public:
/*!
* Get the right endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \return The right endpoint.
*/
const Point_2& operator() (const X_monotone_curve_2& cv) const
{
return (cv.right());
}
};
/*! Get a Construct_max_vertex_2 functor object. */
Construct_max_vertex_2 construct_max_vertex_2_object () const
{
return Construct_max_vertex_2();
}
class Is_vertical_2
{
public:
/*!
* Check whether the given x-monotone curve is a vertical segment.
* \param cv The curve.
* \return (true) if the curve is a vertical segment; (false) otherwise.
*/
bool operator() (const X_monotone_curve_2& cv) const
{
CGAL_precondition (! cv.is_degenerate());
return (cv.is_vertical());
}
};
/*! Get an Is_vertical_2 functor object. */
Is_vertical_2 is_vertical_2_object () const
{
return Is_vertical_2();
}
class Compare_y_at_x_2
{
public:
/*!
* Return the location of the given point with respect to the input curve.
* \param cv The curve.
* \param p The point.
* \pre p is in the x-range of cv.
* \return SMALLER if y(p) < cv(x(p)), i.e. the point is below the curve;
* LARGER if y(p) > cv(x(p)), i.e. the point is above the curve;
* EQUAL if p lies on the curve.
*/
Comparison_result operator() (const Point_2& p,
const X_monotone_curve_2& cv) const
{
CGAL_precondition (! cv.is_degenerate());
CGAL_precondition (cv.is_in_x_range (p));
Kernel kernel;
if (! cv.is_vertical())
{
// Compare p with the segment's supporting line.
return (kernel.compare_y_at_x_2_object()(p, cv.line()));
}
else
{
// Compare with the vertical segment's end-points.
typename Kernel::Compare_y_2 compare_y = kernel.compare_y_2_object();
Comparison_result res1 = compare_y (p, cv.left());
Comparison_result res2 = compare_y (p, cv.right());
if (res1 == res2)
return (res1);
else
return (EQUAL);
}
}
};
/*! Get a Compare_y_at_x_2 functor object. */
Compare_y_at_x_2 compare_y_at_x_2_object () const
{
return Compare_y_at_x_2();
}
class Compare_y_at_x_left_2
{
public:
/*!
* Compare the y value of two x-monotone curves immediately to the left
* of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param p The intersection point.
* \pre The point p lies on both curves, and both of them must be also be
* defined (lexicographically) to its left.
* \return The relative position of cv1 with respect to cv2 immdiately to
* the left of p: SMALLER, LARGER or EQUAL.
*/
Comparison_result operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
const Point_2& p) const
{
CGAL_precondition (! cv1.is_degenerate());
CGAL_precondition (! cv2.is_degenerate());
Kernel kernel;
// Make sure that p lies on both curves, and that both are defined to its
// left (so their left endpoint is lexicographically smaller than p).
CGAL_precondition_code (
typename Kernel::Compare_xy_2 compare_xy =
kernel.compare_xy_2_object();
);
CGAL_precondition
(Segment_assertions::_assert_is_point_on (p, cv1,
Has_exact_division()) &&
Segment_assertions::_assert_is_point_on (p, cv2,
Has_exact_division()));
CGAL_precondition (compare_xy(cv1.left(), p) == SMALLER &&
compare_xy(cv2.left(), p) == SMALLER);
// Compare the slopes of the two segments to determine thir relative
// position immediately to the left of q.
// Notice we use the supporting lines in order to compare the slopes,
// and that we swap the order of the curves in order to obtain the
// correct result to the left of p.
return (kernel.compare_slope_2_object()(cv2.line(), cv1.line()));
}
};
/*! Get a Compare_y_at_x_left_2 functor object. */
Compare_y_at_x_left_2 compare_y_at_x_left_2_object () const
{
return Compare_y_at_x_left_2();
}
class Compare_y_at_x_right_2
{
public:
/*!
* Compare the y value of two x-monotone curves immediately to the right
* of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param p The intersection point.
* \pre The point p lies on both curves, and both of them must be also be
* defined (lexicographically) to its right.
* \return The relative position of cv1 with respect to cv2 immdiately to
* the right of p: SMALLER, LARGER or EQUAL.
*/
Comparison_result operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
const Point_2& p) const
{
CGAL_precondition (! cv1.is_degenerate());
CGAL_precondition (! cv2.is_degenerate());
Kernel kernel;
// Make sure that p lies on both curves, and that both are defined to its
// right (so their right endpoint is lexicographically larger than p).
CGAL_precondition_code (
typename Kernel::Compare_xy_2 compare_xy =
kernel.compare_xy_2_object();
);
CGAL_precondition
(Segment_assertions::_assert_is_point_on (p, cv1,
Has_exact_division()) &&
Segment_assertions::_assert_is_point_on (p, cv2,
Has_exact_division()));
CGAL_precondition (compare_xy(cv1.right(), p) == LARGER &&
compare_xy(cv2.right(), p) == LARGER);
// Compare the slopes of the two segments to determine thir relative
// position immediately to the left of q.
// Notice we use the supporting lines in order to compare the slopes.
return (kernel.compare_slope_2_object()(cv1.line(), cv2.line()));
}
};
/*! Get a Compare_y_at_x_right_2 functor object. */
Compare_y_at_x_right_2 compare_y_at_x_right_2_object () const
{
return Compare_y_at_x_right_2();
}
class Equal_2
{
public:
/*!
* Check if the two x-monotone curves are the same (have the same graph).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are the same; (false) otherwise.
*/
bool operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2) const
{
CGAL_precondition (! cv1.is_degenerate());
CGAL_precondition (! cv2.is_degenerate());
Kernel kernel;
typename Kernel::Equal_2 equal = kernel.equal_2_object();
return (equal(cv1.left(), cv2.left()) &&
equal(cv1.right(), cv2.right()));
}
/*!
* Check if the two points are the same.
* \param p1 The first point.
* \param p2 The second point.
* \return (true) if the two point are the same; (false) otherwise.
*/
bool operator() (const Point_2& p1, const Point_2& p2) const
{
Kernel kernel;
return (kernel.equal_2_object()(p1, p2));
}
};
/*! Get an Equal_2 functor object. */
Equal_2 equal_2_object () const
{
return Equal_2();
}
//@}
/// \name Functor definitions for supporting intersections.
//@{
class Make_x_monotone_2
{
public:
/*!
* Cut the given curve into x-monotone subcurves and insert them into the
* given output iterator. As segments are always x_monotone, only one
* object will be contained in the iterator.
* \param cv The curve.
* \param oi The output iterator, whose value-type is Object. The output
* object is a wrapper of either an X_monotone_curve_2, or - in
* case the input segment is degenerate - a Point_2 object.
* \return The past-the-end iterator.
*/
template<class OutputIterator>
OutputIterator operator() (const Curve_2& cv, OutputIterator oi) const
{
if (! cv.is_degenerate())
{
// Wrap the segment with an object.
*oi = make_object (cv);
}
else
{
// The segment is a degenerate point - wrap it with an object.
*oi = make_object (cv.right());
}
++oi;
return (oi);
}
};
/*! Get a Make_x_monotone_2 functor object. */
Make_x_monotone_2 make_x_monotone_2_object () const
{
return Make_x_monotone_2();
}
class Split_2
{
public:
/*!
* Split a given x-monotone curve at a given point into two sub-curves.
* \param cv The curve to split
* \param p The split point.
* \param c1 Output: The left resulting subcurve (p is its right endpoint).
* \param c2 Output: The right resulting subcurve (p is its left endpoint).
* \pre p lies on cv but is not one of its end-points.
*/
void operator() (const X_monotone_curve_2& cv, const Point_2& p,
X_monotone_curve_2& c1, X_monotone_curve_2& c2) const
{
CGAL_precondition (! cv.is_degenerate());
// Make sure that p lies on the interior of the curve.
CGAL_precondition_code (
Kernel kernel;
typename Kernel::Compare_xy_2 compare_xy =
kernel.compare_xy_2_object();
);
CGAL_precondition
(Segment_assertions::_assert_is_point_on (p, cv,
Has_exact_division()) &&
compare_xy(cv.left(), p) == SMALLER &&
compare_xy(cv.right(), p) == LARGER);
// Perform the split.
c1 = cv;
c1.set_right (p);
c2 = cv;
c2.set_left (p);
return;
}
};
/*! Get a Split_2 functor object. */
Split_2 split_2_object () const
{
return Split_2();
}
class Intersect_2
{
public:
/*!
* Find the intersections of the two given curves and insert them into the
* given output iterator. As two segments may itersect only once, only a
* single intersection will be contained in the iterator.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param oi The output iterator.
* \return The past-the-end iterator.
*/
template<class OutputIterator>
OutputIterator operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
OutputIterator oi) const
{
CGAL_precondition (! cv1.is_degenerate());
CGAL_precondition (! cv2.is_degenerate());
// Intersect the two supporting lines.
Kernel kernel;
CGAL::Object obj = kernel.intersect_2_object()(cv1.line(), cv2.line());
if (obj.is_empty())
{
// The supporting line are parallel lines and do not intersect:
return (oi);
}
// Check if we have a single intersection point.
const Point_2 *ip = object_cast<Point_2> (&obj);
if (ip != NULL)
{
// Check if the intersection point ip lies on both segments.
const bool ip_on_cv1 = cv1.is_vertical() ? cv1.is_in_y_range(*ip) :
cv1.is_in_x_range(*ip);
if (ip_on_cv1)
{
const bool ip_on_cv2 = cv2.is_vertical() ? cv2.is_in_y_range(*ip) :
cv2.is_in_x_range(*ip);
if (ip_on_cv2)
{
// Create a pair representing the point with its multiplicity,
// which is always 1 for line segments.
std::pair<Point_2, unsigned int> ip_mult (*ip, 1);
*oi = make_object (ip_mult);
oi++;
}
}
return (oi);
}
// In this case, the two supporting lines overlap.
// The overlapping segment is therefore [p_l,p_r], where p_l is the
// rightmost of the two left endpoints and p_r is the leftmost of the
// two right endpoints.
typename Kernel::Compare_xy_2 compare_xy = kernel.compare_xy_2_object();
Point_2 p_l, p_r;
if (compare_xy (cv1.left(), cv2.left()) == SMALLER)
p_l = cv2.left();
else
p_l = cv1.left();
if (compare_xy (cv1.right(), cv2.right()) == SMALLER)
p_r = cv1.right();
else
p_r = cv2.right();
// Examine the resulting segment.
const Comparison_result res = compare_xy (p_l, p_r);
if (res == SMALLER)
{
// We have discovered an overlapping segment:
if(cv1.is_directed_right() == cv2.is_directed_right())
{
// cv1 and cv2 have the same directions, maintain this direction
// in the overlap segment
if(cv1.is_directed_right())
{
X_monotone_curve_2 overlap_seg (cv1.line(), p_l, p_r);
*oi = make_object (overlap_seg);
oi++;
}
else
{
X_monotone_curve_2 overlap_seg (cv1.line(), p_r, p_l);
*oi = make_object (overlap_seg);
oi++;
}
}
else
{
// cv1 and cv2 have opposite directions, the overlap segment
// will be directed from left to right
X_monotone_curve_2 overlap_seg (cv1.line(), p_l, p_r);
*oi = make_object (overlap_seg);
oi++;
}
}
else if (res == EQUAL)
{
// The two segment have the same supporting line, but they just share
// a common endpoint. Thus we have an intersection point, but we leave
// the multiplicity of this point undefined.
std::pair<Point_2, unsigned int> ip_mult (p_r, 0);
*oi = make_object (ip_mult);
oi++;
}
return (oi);
}
};
/*! Get an Intersect_2 functor object. */
Intersect_2 intersect_2_object () const
{
return Intersect_2();
}
class Are_mergeable_2
{
public:
/*!
* Check whether it is possible to merge two given x-monotone curves.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are mergeable - if they are supported
* by the same line and share a common endpoint; (false) otherwise.
*/
bool operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2) const
{
CGAL_precondition (! cv1.is_degenerate());
CGAL_precondition (! cv2.is_degenerate());
Kernel kernel;
typename Kernel::Equal_2 equal = kernel.equal_2_object();
// Check if the two curves have the same supporting line.
if (! equal (cv1.line(),
cv2.line()) &&
! equal (cv1.line(),
kernel.construct_opposite_line_2_object() (cv2.line())))
return (false);
// Check if the left endpoint of one curve is the right endpoint of the
// other.
return (equal (cv1.right(), cv2.left()) ||
equal (cv2.right(), cv1.left()));
}
};
/*! Get an Are_mergeable_2 functor object. */
Are_mergeable_2 are_mergeable_2_object () const
{
return Are_mergeable_2();
}
class Merge_2
{
public:
/*!
* Merge two given x-monotone curves into a single curve (segment).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param c Output: The merged curve.
* \pre The two curves are mergeable, that is they are supported by the
* same line and share a common endpoint.
*/
void operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
X_monotone_curve_2& c) const
{
CGAL_precondition (! cv1.is_degenerate());
CGAL_precondition (! cv2.is_degenerate());
Kernel kernel;
typename Kernel::Equal_2 equal = kernel.equal_2_object();
CGAL_precondition
(equal (cv1.line(),
cv2.line()) ||
equal (cv1.line(),
kernel.construct_opposite_line_2_object() (cv2.line())));
// Check which curve extends to the right of the other.
if (equal (cv1.right(), cv2.left()))
{
// cv2 extends cv1 to the right.
c = cv1;
c.set_right (cv2.right());
}
else
{
CGAL_precondition (equal (cv2.right(), cv1.left()));
// cv1 extends cv2 to the right.
c = cv2;
c.set_right (cv1.right());
}
return;
}
};
/*! Get a Merge_2 functor object. */
Merge_2 merge_2_object () const
{
return Merge_2();
}
//@}
/// \name Functor definitions for the landmarks point-location strategy.
//@{
typedef double Approximate_number_type;
class Approximate_2
{
public:
/*!
* Return an approximation of a point coordinate.
* \param p The exact point.
* \param i The coordinate index (either 0 or 1).
* \pre i is either 0 or 1.
* \return An approximation of p's x-coordinate (if i == 0), or an
* approximation of p's y-coordinate (if i == 1).
*/
Approximate_number_type operator() (const Point_2& p,
int i) const
{
CGAL_precondition (i == 0 || i == 1);
if (i == 0)
return (CGAL::to_double(p.x()));
else
return (CGAL::to_double(p.y()));
}
};
/*! Get an Approximate_2 functor object. */
Approximate_2 approximate_2_object () const
{
return Approximate_2();
}
class Construct_x_monotone_curve_2
{
public:
/*!
* Return an x-monotone curve connecting the two given endpoints.
* \param p The first point.
* \param q The second point.
* \pre p and q must not be the same.
* \return A segment connecting p and q.
*/
X_monotone_curve_2 operator() (const Point_2& p,
const Point_2& q) const
{
return (X_monotone_curve_2 (p, q));
}
};
/*! Get a Construct_x_monotone_curve_2 functor object. */
Construct_x_monotone_curve_2 construct_x_monotone_curve_2_object () const
{
return Construct_x_monotone_curve_2();
}
//@}
/// \name Functor definitions for the Boolean set-operation traits.
//@{
class Compare_endpoints_xy_2
{
public:
/*!
* Compare the endpoints of an $x$-monotone curve lexicographically.
* (assuming the curve has a designated source and target points).
* \param cv The curve.
* \return SMALLER if the curve is directed right;
* LARGER if the curve is directed left.
*/
Comparison_result operator() (const X_monotone_curve_2& cv)
{
if (cv.is_directed_right())
return (SMALLER);
else
return (LARGER);
}
};
/*! Get a Compare_endpoints_xy_2 functor object. */
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const
{
return Compare_endpoints_xy_2();
}
class Construct_opposite_2
{
public:
/*!
* Construct an opposite x-monotone (with swapped source and target).
* \param cv The curve.
* \return The opposite curve.
*/
X_monotone_curve_2 operator() (const X_monotone_curve_2& cv)
{
return (cv.flip());
}
};
/*! Get a Construct_opposite_2 functor object. */
Construct_opposite_2 construct_opposite_2_object() const
{
return Construct_opposite_2();
}
//@}
};
/*!
* \class A representation of a segment, as used by the Arr_segment_traits_2
* traits-class.
*/
template <class Kernel_>
class Arr_segment_2 :
public Arr_segment_traits_2<Kernel_>::_Segment_cached_2
{
typedef Kernel_ Kernel;
typedef typename Arr_segment_traits_2<Kernel>::_Segment_cached_2 Base;
typedef typename Kernel::Segment_2 Segment_2;
typedef typename Kernel::Point_2 Point_2;
typedef typename Kernel::Line_2 Line_2;
public:
/*!
* Default constructor.
*/
Arr_segment_2 () :
Base()
{}
/*!
* Constructor from a "kernel" segment.
* \param seg The segment.
*/
Arr_segment_2 (const Segment_2& seg) :
Base(seg)
{}
/*!
* Construct a segment from two end-points.
* \param source The source point.
* \param target The target point.
*/
Arr_segment_2 (const Point_2& source, const Point_2& target) :
Base(source,target)
{}
/*!
* Construct a segment from a line and two end-points.
* \param line The supporting line.
* \param source The source point.
* \param target The target point.
* \pre Both source and target must be on the supporting line.
*/
Arr_segment_2 (const Line_2& line,
const Point_2& source, const Point_2& target) :
Base(line,source,target)
{}
/*!
* Cast to a segment.
*/
operator Segment_2 () const
{
Kernel kernel;
Segment_2 seg = kernel.construct_segment_2_object() (this->ps, this->pt);
return (seg);
}
/*!
* Create a bounding box for the segment.
*/
Bbox_2 bbox() const
{
Kernel kernel;
Segment_2 seg = kernel.construct_segment_2_object() (this->ps, this->pt);
return (kernel.construct_bbox_2_object() (seg));
}
/*!
* Get the segment source.
*/
const Point_2& source() const
{
return (this->ps);
}
/*!
* Get the segment target.
*/
const Point_2& target() const
{
return (this->pt);
}
/*! Flip the segment (swap it source and target). */
Arr_segment_2 flip () const
{
Arr_segment_2 opp;
opp.l = this->l;
opp.ps = this->pt;
opp.pt = this->ps;
opp.is_pt_max = !(this->is_pt_max);
opp.is_vert = this->is_vert;
opp.is_degen = this->is_degen;
return (opp);
}
};
/*!
* Exporter for the segment class used by the traits-class.
*/
template <class Kernel, class OutputStream>
OutputStream& operator<< (OutputStream& os, const Arr_segment_2<Kernel>& seg)
{
os << static_cast<typename Kernel::Segment_2>(seg);
return (os);
}
/*!
* Importer for the segment class used by the traits-class.
*/
template <class Kernel, class InputStream>
InputStream& operator>> (InputStream& is, Arr_segment_2<Kernel>& seg)
{
typename Kernel::Segment_2 kernel_seg;
is >> kernel_seg;
seg = kernel_seg;
return (is);
}
CGAL_END_NAMESPACE
#endif