cgal/Skin_surface_3/include/CGAL/triangulate_mixed_complex_3.h

1413 lines
44 KiB
C++

// Copyright (c) 2005 Rijksuniversiteit Groningen (Netherlands)
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Nico Kruithof <Nico@cs.rug.nl>
#ifndef CGAL_TRIANGULATE_MIXED_COMPLEX_3
#define CGAL_TRIANGULATE_MIXED_COMPLEX_3
#include <CGAL/Compute_anchor_3.h>
#include <CGAL/Triangulation_data_structure_3.h>
#include <CGAL/Triangulated_mixed_complex_observer_3.h>
#include <CGAL/Triangulation_incremental_builder_3.h>
#include <CGAL/Skin_surface_traits_3.h>
#include <CGAL/iterator.h>
CGAL_BEGIN_NAMESPACE
template < class CMCT >
class CMCT_Cell {
public:
typedef CMCT_Cell<CMCT> Self;
typedef typename CMCT::Vertex_handle Vertex_handle;
typedef typename CMCT::Rt_Simplex Rt_Simplex;
CMCT_Cell() {
}
CMCT_Cell(Vertex_handle vs[], Rt_Simplex &sim) : sim_(sim) {
for (int i=0; i<4; i++) _vs[i] = vs[i];
}
CMCT_Cell(const Vertex_handle &vh0,
const Vertex_handle &vh1,
const Vertex_handle &vh2,
const Vertex_handle &vh3,
Rt_Simplex &sim) : sim_(sim)
{
_vs[0] = vh0;
_vs[1] = vh1;
_vs[2] = vh2;
_vs[3] = vh3;
}
Vertex_handle operator[](int i) const {
CGAL_assertion((0 <= i) && (i<4));
return _vs[i];
}
Vertex_handle vertex(int i) const {
CGAL_assertion((0 <= i) && (i<4));
return _vs[i];
}
const Rt_Simplex &mixed_cell() const {
return sim_;
}
bool operator==(const Self &other) const {
return ((_vs[0] == other._vs[0]) &&
(_vs[1] == other._vs[1]) &&
(_vs[2] == other._vs[2]) &&
(_vs[3] == other._vs[3]));
}
bool operator!=(const Self &other) const { return !operator==(other); }
private:
Vertex_handle _vs[4];
Rt_Simplex sim_;
};
template < class CMCT >
class CMCT_Cell_iterator {
public:
typedef CMCT_Cell_iterator<CMCT> Self;
typedef typename CMCT::Cell Cell;
typedef typename CMCT::Rt_Finite_vertices_iterator
Rt_Finite_vertices_iterator;
typedef typename CMCT::Rt_Finite_edges_iterator
Rt_Finite_edges_iterator;
typedef typename CMCT::Rt_Finite_facets_iterator
Rt_Finite_facets_iterator;
typedef typename CMCT::Rt_Finite_cells_iterator
Rt_Finite_cells_iterator;
// types of an iterator:
typedef std::forward_iterator_tag iterator_category;
typedef Cell value_type;
typedef std::ptrdiff_t difference_type;
typedef value_type* pointer;
typedef value_type& reference;
CMCT_Cell_iterator(const CMCT *cmct_,
int d=0) : dim(d), cmct(cmct_) {
if (cmct->regular.number_of_vertices()==0) {
dim = 4;
return;
}
vit = cmct->regular.finite_vertices_begin();
eit = cmct->regular.finite_edges_begin();
fit = cmct->regular.finite_facets_begin();
cit = cmct->regular.finite_cells_begin();
cmct->construct_0_cell(vit, std::back_inserter(cells));
vit++;
curr = cells.begin();
}
CMCT_Cell_iterator(const CMCT_Cell_iterator &copy) {
dim=copy.dim; cmct = copy.cmct;
vit=copy.vit; eit=copy.eit; fit=copy.fit; cit=copy.cit;
for (typename std::vector<Cell>::const_iterator it = copy.cells.begin();
it != copy.cells.end(); it++) {
cells.push_back(*it);
}
CGAL_assertion(std::equal(copy.cells.begin(), copy.cells.end(), cells.begin()));
int ncells = cells.size()-std::distance
((typename std::vector<Cell>::const_iterator)copy.curr,
(typename std::vector<Cell>::const_iterator)copy.cells.end());
CGAL_assertion(ncells >= 0);
curr = cells.begin();
while (ncells--!=0) curr++;
CGAL_assertion
(std::distance((typename std::vector<Cell>::const_iterator)curr,
(typename std::vector<Cell>::const_iterator)cells.end())
==
std::distance((typename std::vector<Cell>::const_iterator)copy.curr,
(typename std::vector<Cell>::const_iterator)copy.cells.end()));
}
Self &operator=(const CMCT_Cell_iterator &other) {
if (&other != this) {
dim=other.dim; cmct = other.cmct;
vit=other.vit; eit=other.eit; fit=other.fit; cit=other.cit;
for (typename std::vector<Cell>::const_iterator
it = other.cells.begin();
it != other.cells.end(); it++) {
cells.push_back(*it);
}
int ncells = cells.size() - std::distance(other.curr, other.cells.end());
CGAL_assertion(ncells > 0);
curr = cells.begin();
while (ncells--!=0) curr++;
CGAL_assertion(std::distance(curr, (typename std::vector<Cell>::const_iterator) cells.end()) ==
std::distance(other.curr, other.cells.end()));
}
return *this;
}
Self & operator++() {
CGAL_assertion(curr != cells.end());
curr++;
if (curr != cells.end()) return *this;
cells.clear();
while (cells.empty() && (dim < 4)) {
switch (dim) {
case 0:
{
if (vit == cmct->regular.finite_vertices_end()) {
dim ++;
} else {
cmct->construct_0_cell(vit, std::back_inserter(cells));
vit ++;
}
break;
}
case 1:
{
if (eit == cmct->regular.finite_edges_end()) {
dim ++;
} else {
cmct->construct_1_cell(eit, std::back_inserter(cells));
eit ++;
}
break;
}
case 2:
{
if (fit == cmct->regular.finite_facets_end()) {
dim ++;
} else {
cmct->construct_2_cell(fit, std::back_inserter(cells));
fit ++;
}
break;
}
case 3:
{
if (cit == cmct->regular.finite_cells_end()) {
dim ++;
} else {
cmct->construct_3_cell(cit, std::back_inserter(cells));
cit ++;
}
break;
}
};
}
curr = cells.begin();
return *this;
}
CMCT_Cell_iterator & operator++(int i) {
CMCT_Cell_iterator temp = *this;
--*this;
return temp;
}
Cell & operator*() const {
CGAL_assertion(dim < 4);
CGAL_assertion(curr != cells.end());
return *curr;
}
pointer operator->() const {
CGAL_assertion(dim < 4);
CGAL_assertion(curr != cells.end());
return &*curr;
}
operator pointer() { return *curr; }
bool operator==(const CMCT_Cell_iterator &other) const {
if ((dim == 4) || (other.dim == 4) )
return (dim==other.dim);
return (*curr == *other.curr);
}
bool operator!=(const CMCT_Cell_iterator &other) const {
return !(*this==other);
}
private:
int dim;
const CMCT *cmct;
Rt_Finite_vertices_iterator vit;
Rt_Finite_edges_iterator eit;
Rt_Finite_facets_iterator fit;
Rt_Finite_cells_iterator cit;
std::vector<Cell> cells; // Cells in the current mixed cell;
//typename std::vector<Cell>::const_iterator curr;
typename std::vector<Cell>::iterator curr;
};
template <class MixedComplexTraits_3>
class Combinatorial_mixed_complex_triangulator_3 {
typedef Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>
Self;
public:
typedef MixedComplexTraits_3 Regular;
typedef typename Regular::Geom_traits Regular_traits;
// NGHK: Make private again: private:
typedef typename Regular::Vertex_handle Rt_Vertex_handle;
typedef typename Regular::Edge Rt_Edge;
typedef typename Regular::Facet Rt_Facet;
typedef typename Regular::Cell_handle Rt_Cell_handle;
typedef typename Regular::Finite_vertices_iterator Rt_Finite_vertices_iterator;
typedef typename Regular::Finite_edges_iterator Rt_Finite_edges_iterator;
typedef typename Regular::Finite_facets_iterator Rt_Finite_facets_iterator;
typedef typename Regular::All_cells_iterator Rt_All_cells_iterator;
typedef typename Regular::Finite_cells_iterator Rt_Finite_cells_iterator;
typedef typename Regular::Cell_circulator Rt_Cell_circulator;
typedef Triangulation_simplex_3<Regular> Rt_Simplex;
typedef typename Regular::Bare_point Rt_Point;
typedef typename Regular_traits::FT Rt_FT;
typedef typename Regular::Weighted_point Rt_Weighted_point;
typedef Compute_anchor_3<Regular> Compute_anchor;
typedef std::pair<Rt_Simplex,Rt_Simplex> Symb_anchor;
typedef Symb_anchor Vertex;
typedef const Vertex * Vertex_handle;
typedef CMCT_Cell<Self> Cell;
friend class CMCT_Cell_iterator<Self>;
typedef CMCT_Cell_iterator<Self> Cell_iterator;
// You might get type differences here:
// The map that maps a Rt_Simplex to an iterator of the map
// (used as union_find_structure)
struct Anchor_map_iterator_tmp;
typedef std::map<Rt_Simplex, Anchor_map_iterator_tmp> Anchor_map;
struct Anchor_map_iterator_tmp : Anchor_map::iterator {
Anchor_map_iterator_tmp()
: Anchor_map::iterator() {}
Anchor_map_iterator_tmp(typename Anchor_map::iterator const &it)
: Anchor_map::iterator(it) {}
};
typedef typename Anchor_map::iterator Anchor_map_iterator;
typedef typename Anchor_map::const_iterator Anchor_map_const_iterator;
typedef std::set<Vertex> Vertex_container;
typedef typename Vertex_container::iterator Vertex_container_it;
typedef Vertex_container_it Vertex_iterator;
typedef std::map<Vertex_handle, Vertex_handle> Symb_vertex_map;
typedef typename Symb_vertex_map::const_iterator Symb_vertex_map_const_it;
class Is_no_vertex {
const Self *ctmc;
public:
Is_no_vertex(const Self *ctmc_) : ctmc(ctmc_) {}
bool operator()(const Symb_vertex_map_const_it & it) const
{
return (it->first != it->second);
}
};
//typedef Filter_iterator<Symb_vertex_map_const_it, Is_no_vertex> Vertex_iterator;
// class Vertex_iterator {
// typedef Self Combinatorial_mixed_complex_triangulator_3;
// public:
// // types of an iterator:
// typedef std::forward_iterator_tag iterator_category;
// typedef Vertex value_type;
// typedef std::ptrdiff_t difference_type;
// typedef value_type* pointer;
// typedef value_type& reference;
// Vertex_iterator(Symb_vertex_map_const_it it, Symb_vertex_map_const_it end) :
// it(it), end(end) {}
// Vertex_iterator(Symb_vertex_map_const_it end) :
// it(end), end(end) {}
// Vertex_iterator& operator++() {
// do { ++it; } while (it != end && (it->first != it->second));
// return *this;
// }
// Vertex_iterator operator++(int) {
// Vertex_iterator tmp(*this);
// ++(*this);
// return tmp;
// }
// reference operator*() const { return (it->first); }
// pointer operator->() const { return (it->first); }
// bool operator==(const Vertex_iterator other) {
// return (other.it == it);
// }
// bool operator!=(const Vertex_iterator other) {
// return !(other.it == it);
// }
// private:
// Symb_vertex_map_const_it it, end;
// };
public:
Combinatorial_mixed_complex_triangulator_3(Regular const &regular,
bool verbose)
: regular(regular), verbose(verbose),
compute_anchor_obj(regular) {
construct_vertices();
}
void construct_vertices();
template <class OutputIteratorVertices>
void construct_vertices(OutputIteratorVertices vertices);
Vertex_iterator vertices_begin() {
return vertices.begin();
}
Vertex_iterator vertices_end() {
return vertices.end();
}
Cell_iterator cells_begin() {
return Cell_iterator(this);
}
Cell_iterator cells_end() {
return Cell_iterator(this, 4);
}
template <class OutputIteratorCells>
void construct_0_cell(Rt_Vertex_handle rt_vh,
OutputIteratorCells out) const;
template <class OutputIteratorCells>
void construct_1_cell(const Rt_Edge &e,
OutputIteratorCells out) const;
template <class OutputIteratorCells>
void construct_1_cell(Rt_Finite_edges_iterator eit,
OutputIteratorCells out) const {
construct_1_cell(*eit, out);
}
template <class OutputIteratorCells>
void construct_2_cell(const Rt_Facet &f,
OutputIteratorCells out) const;
template <class OutputIteratorCells>
void construct_2_cell(const Rt_Finite_facets_iterator &fit,
OutputIteratorCells out) const {
construct_2_cell(*fit, out);
}
template <class OutputIteratorCells>
void construct_3_cell(Rt_Cell_handle rt_ch,
OutputIteratorCells out) const;
template <class Other_MixedComplexTraits_3>
typename Other_MixedComplexTraits_3::Bare_point
location(const Vertex &v,
const Other_MixedComplexTraits_3 &traits) const {
typename Other_MixedComplexTraits_3::Bare_point p_del =
orthocenter(v.first, traits);
typename Other_MixedComplexTraits_3::Bare_point p_vor =
orthocenter(v.second, traits);
return traits.construct_anchor_point_3_object()(p_del, p_vor);
}
template <class Other_MixedComplexTraits_3>
typename Other_MixedComplexTraits_3::Bare_point
location(const Vertex_handle vh,
const Other_MixedComplexTraits_3 &traits) const {
typename Other_MixedComplexTraits_3::Bare_point p_del =
orthocenter(vh->first, traits);
typename Other_MixedComplexTraits_3::Bare_point p_vor =
orthocenter(vh->second, traits);
typename Other_MixedComplexTraits_3::Bare_point result =
traits.construct_anchor_point_3_object()(p_del, p_vor);
return result;
}
template <class Other_MixedComplexTraits_3>
Bounded_side bounded_side(const typename Regular_traits::Bare_point &p,
const Cell &c,
const Other_MixedComplexTraits_3 &traits) const {
typedef Other_MixedComplexTraits_3 Traits;
typedef typename Traits::Bare_point::R::Tetrahedron_3 Tetrahedron;
typedef Cartesian_converter<
typename Regular_traits::Bare_point::R,
typename Traits::Bare_point::R> Converter;
typename Traits::Bare_point pts[5];
for (int i=0; i<4; i++) pts[i] = location(c[i], traits);
pts[4] = Converter()(p);
return
Tetrahedron(pts[0],pts[1],pts[2],pts[3]).bounded_side(pts[4]);
}
private:
template <class Other_MixedComplexTraits_3>
typename Other_MixedComplexTraits_3::Bare_point
orthocenter(const Rt_Simplex &s,
const Other_MixedComplexTraits_3 &traits) const {
Weighted_converter_3
<Cartesian_converter<typename Regular_traits::Bare_point::R,
typename Other_MixedComplexTraits_3::K> >
converter;
switch(s.dimension()) {
case 0:
{
Rt_Vertex_handle vh = s;
return converter(vh->point());
}
case 1:
{
Rt_Edge e = s;
return traits.construct_weighted_circumcenter_3_object()
(converter(e.first->vertex(e.second)->point()),
converter(e.first->vertex(e.third)->point()));
}
case 2:
{
Rt_Facet f = s;
return traits.construct_weighted_circumcenter_3_object()
(converter(f.first->vertex((f.second+1)&3)->point()),
converter(f.first->vertex((f.second+2)&3)->point()),
converter(f.first->vertex((f.second+3)&3)->point()));
}
case 3:
{
Rt_Cell_handle ch = s;
return traits.construct_weighted_circumcenter_3_object()
(converter(ch->vertex(0)->point()),
converter(ch->vertex(1)->point()),
converter(ch->vertex(2)->point()),
converter(ch->vertex(3)->point()));
}
}
CGAL_assertion(false);
return typename Other_MixedComplexTraits_3::Weighted_point();
}
Vertex_handle add_vertex(Symb_anchor anchor);
template <class OutputIteratorCells>
void add_cell(Vertex_handle vh[],
int orient,
Rt_Simplex &simplex,
OutputIteratorCells cells) const;
Vertex_handle get_vertex(Rt_Simplex &sDel, Rt_Simplex &sVor) const;
void construct_anchor_del(Rt_Simplex const &sDel);
void construct_anchor_vor(Rt_Simplex const &sVor);
void construct_anchors();
const Rt_Simplex get_anchor_del(Rt_Simplex const &sDel) const {
return find_anchor(anchor_del2, sDel)->first;
}
const Rt_Simplex get_anchor_vor(Rt_Simplex const &sVor) const {
Anchor_map_const_iterator it = find_anchor(anchor_vor2, sVor);
return it->first;
}
Anchor_map_const_iterator find_anchor(const Anchor_map &a_map,
Rt_Simplex const&s) const {
Anchor_map_const_iterator it = a_map.find(s);
return find_anchor(a_map, it);
}
Anchor_map_const_iterator find_anchor(const Anchor_map &a_map,
Anchor_map_const_iterator &start) const {
CGAL_assertion(start != a_map.end());
Anchor_map_const_iterator it = start;
while (it != it->second) it = it->second;
return it;
}
Anchor_map_iterator find_anchor(Anchor_map &a_map,
Anchor_map_iterator &start) {
// do the union-find-trick:
CGAL_assertion(start != a_map.end());
Anchor_map_iterator it1 = start;
Anchor_map_iterator it2 = it1->second;
while (it2 != it2->second) {
it1->second = it2->second;
// NGHK: changed the type for the map-iterator-hack
it2->second = it1;
it2 = it1->second;
}
return it2;
}
private:
Regular const &regular;
bool verbose;
Compute_anchor compute_anchor_obj;
Anchor_map anchor_del2, anchor_vor2;
Vertex_container vertices;
};
template < class GT,
class QuadraticSurface_3,
class Cb = Triangulation_cell_base_3<GT> >
class Triangulated_mixed_complex_cell_3 : public Cb
{
public:
typedef typename Cb::Triangulation_data_structure Triangulation_data_structure;
typedef typename Triangulation_data_structure::Vertex_handle Vertex_handle;
typedef typename Triangulation_data_structure::Cell_handle Cell_handle;
typedef QuadraticSurface_3 Quadratic_surface;
template < class TDS2 >
struct Rebind_TDS {
typedef typename Cb::template Rebind_TDS<TDS2>::Other Cb2;
typedef Triangulated_mixed_complex_cell_3<GT, QuadraticSurface_3, Cb2>
Other;
};
Triangulated_mixed_complex_cell_3() : Cb() {
}
Triangulated_mixed_complex_cell_3(Vertex_handle v0, Vertex_handle v1,
Vertex_handle v2, Vertex_handle v3)
: Cb(v0, v1, v2, v3) {
}
Quadratic_surface *surf;
};
template < class GT,
class Vb = Triangulation_vertex_base_3<GT> >
class Triangulated_mixed_complex_vertex_3 : public Vb
{
public:
typedef typename Vb::Point Point;
typedef typename Vb::Cell_handle Cell_handle;
template < class TDS2 >
struct Rebind_TDS {
typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef Triangulated_mixed_complex_vertex_3<GT, Vb2> Other;
};
Triangulated_mixed_complex_vertex_3() {}
Triangulated_mixed_complex_vertex_3(const Point&p) : Vb(p) {}
Triangulated_mixed_complex_vertex_3(const Point&p, Cell_handle c) : Vb(p, c) {}
Sign sign() const {
return Vb::cell()->surf->sign(Vb::point());
}
};
template <class MixedComplexTraits_3>
void
Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
construct_anchor_del(Rt_Simplex const &sDel) {
Rt_Simplex s = compute_anchor_obj.anchor_del(sDel);
anchor_del2[sDel] = Anchor_map_iterator();
Anchor_map_iterator it = anchor_del2.find(sDel);
Anchor_map_iterator it2 = anchor_del2.find(s);
CGAL_assertion(it != anchor_del2.end());
CGAL_assertion(it2 != anchor_del2.end());
it->second = it2;
// degenerate simplices:
if (compute_anchor_obj.is_degenerate()) {
it = find_anchor(anchor_del2, it);
typename Compute_anchor::Simplex_iterator degenerate_it;
for (degenerate_it = compute_anchor_obj.equivalent_anchors_begin();
degenerate_it != compute_anchor_obj.equivalent_anchors_end();
degenerate_it++) {
Anchor_map_iterator tmp;
it2 = anchor_del2.find(*degenerate_it);
CGAL_assertion(it2 != anchor_del2.end());
// Merge sets:
while (it2 != it2->second) {
tmp = it2->second;
it2->second = it->second;
it2 = tmp;
CGAL_assertion(it2 != anchor_del2.end());
}
it2->second = it->second;
}
}
}
template <class MixedComplexTraits_3>
void
Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
construct_anchor_vor(Rt_Simplex const &sVor) {
Rt_Simplex s = compute_anchor_obj.anchor_vor(sVor);
anchor_vor2[sVor] = Anchor_map_iterator();
Anchor_map_iterator it = anchor_vor2.find(sVor);
Anchor_map_iterator it2 = anchor_vor2.find(s);
CGAL_assertion(it != anchor_vor2.end());
CGAL_assertion(it2 != anchor_vor2.end());
it->second = it2;
// degenerate simplices:
if (compute_anchor_obj.is_degenerate()) {
it = find_anchor(anchor_vor2, it);
typename Compute_anchor::Simplex_iterator degenerate_it;
for (degenerate_it = compute_anchor_obj.equivalent_anchors_begin();
degenerate_it != compute_anchor_obj.equivalent_anchors_end();
degenerate_it++) {
Anchor_map_iterator tmp;
it2 = anchor_vor2.find(*degenerate_it);
// Possibly not found for 2 Voronoi vertices with the same center,
// If the first vertex is inserted and the second is already found.
// see compute_anchor_obj.anchor_vor(Cell_handle)
if (it2 != anchor_vor2.end()) {
CGAL_assertion(it2 != anchor_vor2.end());
// Merge sets:
while (it2 != it2->second) {
tmp = it2->second;
it2->second = it->second;
it2 = tmp;
CGAL_assertion(it2 != anchor_vor2.end());
}
it2->second = it->second;
}
}
}
}
template <class MixedComplexTraits_3>
void
Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
construct_anchors() {
Rt_Finite_vertices_iterator vit;
Rt_Finite_edges_iterator eit;
Rt_Finite_facets_iterator fit;
Rt_Finite_cells_iterator cit;
Rt_Simplex s;
// Compute anchor points:
for (vit=regular.finite_vertices_begin();
vit!=regular.finite_vertices_end(); vit++) {
construct_anchor_del(Rt_Simplex(vit));
}
for (eit=regular.finite_edges_begin();
eit!=regular.finite_edges_end(); eit++) {
s = Rt_Simplex(*eit);
construct_anchor_del(s);
CGAL_assertion(s.dimension() == 1);
}
for (fit=regular.finite_facets_begin();
fit!=regular.finite_facets_end(); fit++) {
s = Rt_Simplex(*fit);
construct_anchor_del(s);
CGAL_assertion(s.dimension() == 2);
}
for (cit=regular.finite_cells_begin();
cit!=regular.finite_cells_end(); cit++) {
s = Rt_Simplex(cit);
construct_anchor_del(s);
construct_anchor_vor(s);
CGAL_assertion(s.dimension() == 3);
}
for (fit=regular.finite_facets_begin();
fit!=regular.finite_facets_end(); fit++) {
s = Rt_Simplex(*fit);
construct_anchor_vor(s);
CGAL_assertion(s.dimension() == 2);
}
for (eit=regular.finite_edges_begin();
eit!=regular.finite_edges_end(); eit++) {
s = Rt_Simplex(*eit);
construct_anchor_vor(s);
CGAL_assertion(s.dimension() == 1);
}
for (vit=regular.finite_vertices_begin();
vit!=regular.finite_vertices_end(); vit++) {
CGAL_assertion(vit->cell() != Rt_Cell_handle());
s = Rt_Simplex(vit);
construct_anchor_vor(s);
CGAL_assertion(s.dimension() == 0);
}
}
// Constructs the vertices of the simplicial complex
template <class MixedComplexTraits_3>
void
Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
construct_vertices()
{
Rt_All_cells_iterator acit;
Rt_Finite_cells_iterator cit;
Rt_Finite_facets_iterator fit;
Rt_Finite_edges_iterator eit;
Rt_Finite_vertices_iterator vit;
Rt_Cell_circulator ccir, cstart;
Rt_Vertex_handle v1, v2, v3;
Rt_Edge e;
Rt_Cell_handle c1, c2;
Rt_Simplex sDel, sVor;
if (verbose) std::cout << "construct_anchors" << std::endl;
construct_anchors();
if (verbose) std::cout << "9 ";
// anchor dimDel=0, dimVor=3
for (cit=regular.finite_cells_begin();
cit!=regular.finite_cells_end(); cit++) {
sVor = get_anchor_vor(Rt_Simplex(cit));
for (int i=0; i<4; i++) {
sDel = get_anchor_del(Rt_Simplex(cit->vertex(i)));
add_vertex(Symb_anchor(sDel,sVor));
}
}
if (verbose) std::cout << "8 ";
// anchor dimDel=1, dimVor=3
for (cit = regular.finite_cells_begin();
cit != regular.finite_cells_end(); cit++) {
sVor = get_anchor_vor(Rt_Simplex(cit));
for (int i=0; i<3; i++) {
for (int j=i+1; j<4; j++) {
sDel = get_anchor_del(Rt_Simplex(Rt_Edge(cit,i,j)));
add_vertex(Symb_anchor(sDel,sVor));
}
}
}
if (verbose) std::cout << "7 ";
// anchor dimDel=2, dimVor=3 and dimDel=0, dimVor=2
for (fit = regular.finite_facets_begin();
fit != regular.finite_facets_end(); fit++) {
// anchor dimDel=2, dimVor=3
c1 = fit->first;
c2 = c1->neighbor(fit->second);
sDel = get_anchor_del(*fit);
if (!regular.is_infinite(c1)) {
sVor = get_anchor_vor(c1);
add_vertex(Symb_anchor(sDel,sVor));
}
if (!regular.is_infinite(c2)) {
sVor = get_anchor_vor(c2);
add_vertex(Symb_anchor(sDel,sVor));
}
// anchor dimDel=0, dimVor=2
sVor = get_anchor_vor(*fit);
for (int i=1; i<4; i++) {
sDel = get_anchor_del(Rt_Simplex(c1->vertex((fit->second+i)&3)));
add_vertex(Symb_anchor(sDel,sVor));
}
}
if (verbose) std::cout << "6 ";
// anchor dimDel=0, dimVor=1
for (eit=regular.finite_edges_begin(); eit!=regular.finite_edges_end(); eit++) {
sVor = get_anchor_vor(*eit);
v1 = eit->first->vertex(eit->second);
v2 = eit->first->vertex(eit->third);
sDel = get_anchor_del(v1);
add_vertex(Symb_anchor(sDel,sVor));
sDel = get_anchor_del(v2);
add_vertex(Symb_anchor(sDel,sVor));
}
if (verbose) std::cout << "5 ";
// anchor dimDel=3, dimVor=3
for (cit=regular.finite_cells_begin();
cit!=regular.finite_cells_end(); cit++) {
sDel = get_anchor_del(Rt_Simplex(cit));
sVor = get_anchor_vor(Rt_Simplex(cit));
add_vertex(Symb_anchor(sDel,sVor));
}
if (verbose) std::cout << "4 ";
// anchor dimDel=0, dimVor=0
for (vit=regular.finite_vertices_begin();
vit!=regular.finite_vertices_end(); vit++) {
sDel = get_anchor_del(Rt_Simplex(vit));
sVor = get_anchor_vor(Rt_Simplex(vit));
add_vertex(Symb_anchor(sDel,sVor));
}
if (verbose) std::cout << "3 ";
// anchor dimDel=1, dimVor=2
for (fit = regular.finite_facets_begin();
fit != regular.finite_facets_end(); fit++) {
c1 = fit->first;
c2 = c1->neighbor(fit->second);
sVor = get_anchor_vor(Rt_Simplex(*fit));
for (int i=1; i<3; i++) {
for (int j=i+1; j<4; j++) {
e.first = c1;
e.second = (fit->second+i)&3;
e.third = (fit->second+j)&3;
sDel = get_anchor_del(Rt_Simplex(e));
add_vertex(Symb_anchor(sDel,sVor));
}
}
}
if (verbose) std::cout << "2 ";
// anchor dimDel=2, dimVor=2
for (fit=regular.finite_facets_begin();
fit!=regular.finite_facets_end(); fit++) {
c1 = fit->first;
c2 = c1->neighbor(fit->second);
sVor = get_anchor_vor(Rt_Simplex(*fit));
sDel = get_anchor_del(Rt_Simplex(*fit));
add_vertex(Symb_anchor(sDel,sVor));
}
if (verbose) std::cout << "1" << std::endl;
// anchor dimDel=1, dimVor=1
for (eit=regular.finite_edges_begin();
eit!=regular.finite_edges_end(); eit++) {
v1 = eit->first->vertex(eit->second);
v2 = eit->first->vertex(eit->third);
sVor = get_anchor_vor(Rt_Simplex(*eit));
sDel = get_anchor_del(Rt_Simplex(*eit));
add_vertex(Symb_anchor(sDel,sVor));
}
}
// Constructs the vertices of the simplicial complex
template <class MixedComplexTraits_3>
template <class OutputIteratorVertices>
void
Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
construct_vertices(OutputIteratorVertices out)
{
for (Vertex_iterator it = vertices.begin();
it != vertices.end(); it++) {
if (it->first == it->second) *out++ = *it;
}
}
// Constructs the cells of the mixed complex corresponding
// to Regular vertices
template <class MixedComplexTraits_3>
template <class OutputIteratorCells>
void
Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
construct_0_cell(Rt_Vertex_handle rt_vh, OutputIteratorCells cells) const
{
Rt_Simplex sDel_v, sVor_v, sVor_e, sVor_f, sVor_c;
Vertex_handle vh[4];
Rt_Simplex simplex(rt_vh);
sDel_v = get_anchor_del(Rt_Simplex(rt_vh));
sVor_v = get_anchor_vor(Rt_Simplex(rt_vh));
vh[0] = get_vertex(sDel_v,sVor_v);
std::list<Rt_Cell_handle> adj_cells;
typename std::list<Rt_Cell_handle>::iterator adj_cell;
regular.incident_cells(rt_vh, std::back_inserter(adj_cells));
// Construct cells:
for (adj_cell = adj_cells.begin();
adj_cell != adj_cells.end();
adj_cell ++) {
if (!regular.is_infinite(*adj_cell)) {
sVor_c = get_anchor_vor(Rt_Simplex(*adj_cell));
vh[3] = get_vertex(sDel_v,sVor_c);
int index = (*adj_cell)->index(rt_vh);
for (int i=1; i<4; i++) {
sVor_f = get_anchor_vor(Rt_Simplex(Rt_Facet(*adj_cell,(index+i)&3)));
vh[2] = get_vertex(sDel_v,sVor_f);
for (int j=1; j<4; j++) {
if (j!=i) {
sVor_e =
get_anchor_vor(Rt_Simplex(Rt_Edge(*adj_cell,index,(index+j)&3)));
vh[1] = get_vertex(sDel_v,sVor_e);
if ((vh[0] != vh[1]) && (vh[1] != vh[2]) && (vh[2] != vh[3])) {
CGAL_assertion(sVor_v != sVor_e);
CGAL_assertion(sVor_e != sVor_f);
CGAL_assertion(sVor_f != sVor_c);
add_cell(vh,(index + (j==(i%3+1)? 1:0))&1,
simplex, cells);
}
}
}
}
}
}
}
// Constructs 1-cells of the mixed complex corresponding to edges
// of the regular triangulation
template <class MixedComplexTraits_3>
template <class OutputIteratorCells>
void
Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
construct_1_cell(const Rt_Edge &e,
OutputIteratorCells cells) const {
Rt_Simplex sDel_v, sDel_e, sVor_e, sVor_f, sVor_c;
Vertex_handle vh[4];
Rt_Vertex_handle v[2];
Rt_Simplex mixed_cell_simplex(e);
sDel_e = get_anchor_del(Rt_Simplex(e));
sVor_e = get_anchor_vor(Rt_Simplex(e));
v[0] = e.first->vertex(e.second);
v[1] = e.first->vertex(e.third);
// Construct cells on the side of v[vi]:
for (int vi=0; vi<2; vi++) {
sDel_v = get_anchor_del(Rt_Simplex(v[vi]));
if (!(sDel_v == sDel_e)) {
Rt_Cell_circulator ccir, cstart;
ccir = cstart = regular.incident_cells(e);
do {
if (!regular.is_infinite(ccir)) {
int index0 = ccir->index(v[vi]);
int index1 = ccir->index(v[1-vi]);
sVor_c = get_anchor_vor(Rt_Simplex(ccir));
for (int fi=1; fi<4; fi++) {
if (((index0+fi)&3) != index1) {
sVor_f =
get_anchor_vor(Rt_Simplex(Rt_Facet(ccir,(index0+fi)&3)));
if ((sVor_c != sVor_f) && (sVor_f != sVor_e)) {
vh[0] = get_vertex(sDel_v, sVor_e);
vh[1] = get_vertex(sDel_e, sVor_e);
vh[2] = get_vertex(sDel_e, sVor_f);
vh[3] = get_vertex(sDel_e, sVor_c);
int orient;
if (((4+index1-index0)&3) == 1) {
orient = (index1 + (fi==2))&1;
} else {
orient = (index1 + (fi==1))&1;
}
// vh: dimension are (01,11,12,13)
add_cell(vh,orient,mixed_cell_simplex,cells);
vh[1] = get_vertex(sDel_v, sVor_f);
// vh: dimension are (01,02,12,13)
add_cell(vh,1-orient,mixed_cell_simplex,cells);
vh[2] = get_vertex(sDel_v, sVor_c);
// vh: dimension are (01,02,03,13)
add_cell(vh,orient,mixed_cell_simplex,cells);
}
}
}
}
ccir ++;
} while (ccir != cstart);
}
}
}
// Constructs 2-cells of the mixed complex corresponding to facets
// of the regular triangulation
template <class MixedComplexTraits_3>
template <class OutputIteratorCells>
void
Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
construct_2_cell(const Rt_Facet &f,
OutputIteratorCells cells) const {
Rt_Simplex sDel_v, sDel_e, sDel_f, sVor_f, sVor_c;
Vertex_handle vh[4]; // Implicit function over vLabels is increasing ...
Rt_Cell_handle rt_ch;
int index;
rt_ch = f.first;
index = f.second;
Rt_Simplex simplex(f);
sDel_f = get_anchor_del(Rt_Simplex(f));
sVor_f = get_anchor_vor(Rt_Simplex(f));
for (int i=0; i<2; i++) { // Do this twice
if (!regular.is_infinite(rt_ch)) {
sVor_c = get_anchor_vor(Rt_Simplex(rt_ch));
vh[3] = get_vertex(sDel_f, sVor_c);
Vertex_handle vh2 = get_vertex(sDel_f, sVor_f);
if (vh2 != vh[3]) {
// Facet and cell do not coincide ..
for (int vi=1; vi<4; vi++) {
sDel_v = get_anchor_del(Rt_Simplex(rt_ch->vertex((index+vi)&3)));
//index_02[rt_ch].V[index][(index+vi)&3];
vh[0] = get_vertex(sDel_v, sVor_f);
for (int ei=1; ei<4; ei++) {
if (vi != ei) {
vh[2] = vh2;
int index0 = (index+vi)&3;
int index1 = (index+ei)&3;
int fi = (6+index-vi-ei)&3;//6-index-index0-index1;
sDel_e =
get_anchor_del(Rt_Simplex(Rt_Edge(rt_ch, index0, index1)));
vh[1] = get_vertex(sDel_e, sVor_f);
//index_12[rt_ch].V[index][(6+index-vi-ei)&3];
if ((vh[0] != vh[1]) && (vh[1] != vh[2])) {
// index0: v0
// index1: v1
// index0+fi&3 == facet
int orient;
if (((4+index1-index0)&3) == 3) {
orient = (index1 + (((4+index0-fi)&3)==2))&1;
} else {
orient = (index1 + (((4+index0-fi)&3)==1))&1;
}
add_cell(vh,orient,simplex,cells);
vh[2] = get_vertex(sDel_e, sVor_c);
add_cell(vh,1-orient,simplex,cells);
vh[1] = get_vertex(sDel_v, sVor_c);
add_cell(vh,orient,simplex,cells);
}
}
}
}
}
}
// swap to the other cell
Rt_Cell_handle ch_old = rt_ch;
rt_ch = rt_ch->neighbor(index);
index = rt_ch->index(ch_old);
}
CGAL_assertion(rt_ch == f.first);
CGAL_assertion(index == f.second);
}
// Constructs 3-cells of the mixed complex corresponding to cells
// of the regular triangulation
template <class MixedComplexTraits_3>
template <class OutputIteratorCells>
void
Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
construct_3_cell(Rt_Cell_handle rt_ch,
OutputIteratorCells cells) const {
Rt_Simplex sDel_v, sDel_e, sDel_f, sDel_c, sVor_c;
Vertex_handle vh[4];
// construct the tetrahedron:
// C[ch], C[Facet(ch,fi)], C[Edge(ch,ei,vi)], C[ch->vertex(vi)]
sDel_c = get_anchor_del(Rt_Simplex(rt_ch));
sVor_c = get_anchor_vor(Rt_Simplex(rt_ch));
Rt_Simplex simplex = Rt_Simplex(rt_ch);
vh[0] = get_vertex(sDel_c, sVor_c);
for (int fi=0; fi<4; fi++) {
sDel_f = get_anchor_del(Rt_Simplex(Rt_Facet(rt_ch, fi)));
vh[1] = get_vertex(sDel_f, sVor_c);
if (vh[0] != vh[1]) {
for (int vi=1; vi<4; vi++) {
int index0 = (fi+vi)&3;
sDel_v = get_anchor_del(Rt_Simplex(rt_ch->vertex(index0)));
for (int ei=1; ei<4; ei++) {
int index1 = (fi+ei)&3;
if (vi != ei) {
sDel_e = get_anchor_del(Rt_Simplex(Rt_Edge(rt_ch, index0, index1)));
vh[2] = get_vertex(sDel_e, sVor_c);
// index_13[rt_ch].V[edge_index[index0][index1]];
vh[3] = get_vertex(sDel_v, sVor_c);
// index_03[rt_cit].V[index0];
if ((vh[1] != vh[2]) && (vh[2] != vh[3])) {
int orient;
if (((4+index1-index0)&3) == 1) {
orient = (index1 + (vi==2))&1;
} else {
orient = (index1 + (vi==3))&1;
}
add_cell(vh, orient, simplex, cells);
}
}
}
}
}
}
}
// Adds a vertex to the simplicial complex
template <class MixedComplexTraits_3>
typename Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
Vertex_handle
Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
add_vertex (Symb_anchor anchor)
{
Vertex_iterator vit = vertices.find(anchor);
if (vit == vertices.end())
return &*(vertices.insert(anchor).first);
return &*vit;
}
// Gets a vertex from the simplicial complex based on the anchors
template <class MixedComplexTraits_3>
typename Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
Vertex_handle
Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
get_vertex (Rt_Simplex &sDel, Rt_Simplex &sVor) const
{
Rt_Simplex sDel2 = get_anchor_del(sDel);
Rt_Simplex sVor2 = get_anchor_vor(sVor);
CGAL_assertion(sDel == sDel2);
CGAL_assertion(sVor == sVor2);
Vertex_container_it it = vertices.find(Symb_anchor(sDel2,sVor2));
// Symb_vertex_map_const_it it = anchors.find(Symb_anchor(sDel2,sVor2));
CGAL_assertion(it != vertices.end());
Vertex_handle vh = &*it;
CGAL_assertion(*vh != Vertex());
return vh;
}
// Adds a cell to the simplicial complex
template <class MixedComplexTraits_3>
template <class OutputIteratorCells>
void
Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>::
add_cell(Vertex_handle vh[], int orient,
Rt_Simplex &simplex,
OutputIteratorCells cells) const {
assert((orient==0) || (orient==1));
assert(*vh[0] != Vertex()); assert(*vh[1] != Vertex());
assert(*vh[2] != Vertex()); assert(*vh[3] != Vertex());
assert(*vh[0] != *vh[1]); assert(*vh[0] != *vh[2]); assert(*vh[0] != *vh[3]);
assert(*vh[1] != *vh[2]); assert(*vh[1] != *vh[3]); assert(*vh[2] != *vh[3]);
if (orient) {
*cells++ = Cell(vh[0], vh[1], vh[2], vh[3], simplex);
} else {
*cells++ = Cell(vh[0], vh[1], vh[3], vh[2], simplex);
}
}
template <class MixedComplexTraits_3,
class OutputTriangulation_3,
class TriangulatedMixedComplexObserver_3>
void
triangulate_mixed_complex_3(MixedComplexTraits_3 &rt,
typename MixedComplexTraits_3::Geom_traits::FT
const & shrink_factor,
OutputTriangulation_3 &tmc,
TriangulatedMixedComplexObserver_3 &observer,
bool verbose)
{
typedef MixedComplexTraits_3 Regular;
typedef typename Regular::Finite_vertices_iterator Rt_Vertices_iterator;
typedef typename Regular::Finite_edges_iterator Rt_Edges_iterator;
typedef typename Regular::Finite_facets_iterator Rt_Facets_iterator;
typedef typename Regular::Finite_cells_iterator Rt_Cells_iterator;
typedef Triangulation_simplex_3<Regular> Rt_Simplex;
typedef Combinatorial_mixed_complex_triangulator_3<MixedComplexTraits_3>
CMCT;
typedef typename CMCT::Vertex Cmct_Vertex;
typedef typename CMCT::Vertex_handle Cmct_Vertex_handle;
typedef typename CMCT::Cell Cmct_Cell;
typedef typename CMCT::Vertex_iterator Cmct_Vertex_iterator;
typedef Triangulation_incremental_builder_3<OutputTriangulation_3>
Triangulation_incremental_builder;
typedef Skin_surface_traits_3<typename OutputTriangulation_3::Geom_traits>
Mc_traits;
typedef typename OutputTriangulation_3::Vertex_handle Out_Vertex_handle;
typedef typename OutputTriangulation_3::Cell_handle Out_Cell_handle;
CMCT mc_triangulator(rt, verbose);
Triangulation_incremental_builder triangulation_incr_builder(tmc);
std::map <Cmct_Vertex_handle, Out_Vertex_handle> vertex_map;
triangulation_incr_builder.begin_triangulation(3);
{ // Vertices
if (verbose) std::cout << "Construct vertices" << std::endl;
// std::list<const Cmct_Vertex_handle> vertices;
//std::list<Cmct_Vertex_iterator> v2;
//mc_triangulator.construct_vertices(std::back_inserter(vertices));
// { // NGHK: DEBUG CODE
// Cmct_Vertex_iterator vit = mc_triangulator.vertices_begin();
// CGAL_assertion((int)std::distance(mc_triangulator.vertices_begin(),
// mc_triangulator.vertices_end())==
// (int)vertices.size());
// }
for (Cmct_Vertex_iterator vit = mc_triangulator.vertices_begin();
vit != mc_triangulator.vertices_end(); vit++) {
Out_Vertex_handle vh = triangulation_incr_builder.add_vertex();
vh->point() = mc_triangulator.location(*vit, Mc_traits(shrink_factor));
Cmct_Vertex_handle cmct_vh = &*vit;
vertex_map[cmct_vh] = vh;
observer.after_vertex_insertion((*vit).first, (*vit).second, vh);
}
}
{ // Cells
std::vector<Cmct_Cell> cells;
int nCells=0, nSimplices=0;
// mixed cells corresponding to regular vertices
if (verbose) std::cout << "Construct 0 cells" << std::endl;
for (Rt_Vertices_iterator vit = rt.finite_vertices_begin();
vit != rt.finite_vertices_end(); vit ++) {
mc_triangulator.construct_0_cell(vit, std::back_inserter(cells));
nCells += cells.size();nSimplices++;
Rt_Simplex s(vit);
for (typename std::vector<Cmct_Cell>::iterator it = cells.begin();
it != cells.end(); it++) {
Out_Cell_handle ch =
triangulation_incr_builder.add_cell(vertex_map[(it->vertex(0))],
vertex_map[(it->vertex(1))],
vertex_map[(it->vertex(2))],
vertex_map[(it->vertex(3))]);
observer.after_cell_insertion(s, ch);
}
cells.clear();
}
// mixed cells corresponding to regular edges
if (verbose) std::cout << "Construct 1 cells" << std::endl;
for (Rt_Edges_iterator eit = rt.finite_edges_begin();
eit != rt.finite_edges_end(); eit ++) {
mc_triangulator.construct_1_cell(eit, std::back_inserter(cells));
nCells += cells.size();nSimplices++;
Rt_Simplex s(*eit);
for (typename std::vector<Cmct_Cell>::iterator it = cells.begin();
it != cells.end(); it++) {
Out_Cell_handle ch =
triangulation_incr_builder.add_cell(vertex_map[(it->vertex(0))],
vertex_map[(it->vertex(1))],
vertex_map[(it->vertex(2))],
vertex_map[(it->vertex(3))]);
observer.after_cell_insertion(s, ch);
}
cells.clear();
}
// mixed cells corresponding to regular facets
if (verbose) std::cout << "Construct 2 cells" << std::endl;
for (Rt_Facets_iterator fit = rt.finite_facets_begin();
fit != rt.finite_facets_end(); fit ++) {
mc_triangulator.construct_2_cell(fit, std::back_inserter(cells));
nCells += cells.size();nSimplices++;
Rt_Simplex s(*fit);
for (typename std::vector<Cmct_Cell>::iterator it = cells.begin();
it != cells.end(); it++) {
Out_Cell_handle ch =
triangulation_incr_builder.add_cell(vertex_map[(it->vertex(0))],
vertex_map[(it->vertex(1))],
vertex_map[(it->vertex(2))],
vertex_map[(it->vertex(3))]);
observer.after_cell_insertion(s, ch);
}
cells.clear();
}
// mixed cells corresponding to regular cells
if (verbose) std::cout << "Construct 3 cells" << std::endl;
for (Rt_Cells_iterator cit = rt.finite_cells_begin();
cit != rt.finite_cells_end(); cit ++) {
mc_triangulator.construct_3_cell(cit, std::back_inserter(cells));
nCells += cells.size();nSimplices++;
Rt_Simplex s(cit);
for (typename std::vector<Cmct_Cell>::iterator it = cells.begin();
it != cells.end(); it++) {
Out_Cell_handle ch =
triangulation_incr_builder.add_cell(vertex_map[(it->vertex(0))],
vertex_map[(it->vertex(1))],
vertex_map[(it->vertex(2))],
vertex_map[(it->vertex(3))]);
observer.after_cell_insertion(s, ch);
}
cells.clear();
}
CGAL_assertion(std::distance(mc_triangulator.cells_begin(),
mc_triangulator.cells_end()) == nCells);
}
triangulation_incr_builder.end_triangulation();
// // mixed cells corresponding to regular edges
// if (verbose) std::cout << "Construct 1 cells" << std::endl;
// for (Rt_Finite_edges_iterator eit = regular.finite_edges_begin();
// eit != regular.finite_edges_end(); eit ++) {
// construct_1_cell(eit, std::back_inserter(cells));
// }
// // mixed cells corresponding to regular facets
// if (verbose) std::cout << "Construct 2 cells" << std::endl;
// for (Rt_Finite_facets_iterator fit = regular.finite_facets_begin();
// fit != regular.finite_facets_end(); fit ++) {
// construct_2_cell(fit, std::back_inserter(cells));
// }
// // mixed cells corresponding to regular cells
// if (verbose) std::cout << "Construct 3 cells" << std::endl;
// for (Rt_Finite_cells_iterator cit = regular.finite_cells_begin();
// cit != regular.finite_cells_end();
// cit++) {
// construct_3_cell(cit, std::back_inserter(cells));
// }
// triangulation_incr_builder.end_triangulation();
// anchors.clear();
// //remove_small_edges();
// { // NGHK: debug code:
// CGAL_assertion(_tmc.is_valid());
// std::vector<Vertex> ch_vertices;
// _tmc.incident_vertices(_tmc.infinite_vertex(),
// std::back_inserter(ch_vertices));
// for (typename std::vector<Vertex>::iterator
// vit = ch_vertices.begin(); vit != ch_vertices.end(); vit++) {
// CGAL_assertion((*vit)->sign() == POSITIVE);
// }
// }
}
template <
class MixedComplexTraits_3,
class TriangulatedMixedComplex_3>
void
triangulate_mixed_complex_3(MixedComplexTraits_3 const &regular,
typename MixedComplexTraits_3::Geom_traits::FT
const &shrink_factor,
TriangulatedMixedComplex_3 &tmc,
bool verbose)
{
Triangulated_mixed_complex_observer_3<
TriangulatedMixedComplex_3, const MixedComplexTraits_3>
observer(shrink_factor);
triangulate_mixed_complex_3(regular, shrink_factor, tmc, observer, verbose);
}
CGAL_END_NAMESPACE
#endif // CGAL_TRIANGULATE_MIXED_COMPLEX_H