cgal/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/AlgebraicStructureTraits_In...

39 lines
1.1 KiB
TeX

\begin{ccRefConcept}{AlgebraicStructureTraits::IntegralSqrt}
\begin{ccAdvanced}
\ccDefinition
\ccc{AdaptableBinaryFunction} providing an integral square root.
An ring element $a$ is said to be is an square if there exists a ring element $b$ such
that $a= b*b$. Since the ring represented is an integral domain,
$b$ is uniquely defined up to multiplication by units.
\ccRefines
\ccc{AdaptableUnaryFunction}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef bool result_type;}{}\ccGlue
\ccTypedef{typedef AlgebraicStructureTraits::AS first_argument_type;}{}\ccGlue
\ccTypedef{typedef AlgebraicStructureTraits::AS second_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(const first_argument_type& a,
second_argument_type& b);}
{ return {\tt true} in case $a$ is a perfect square, i.e. $a = b*b$.\\
postcond: $unit\_part(b) = 1$. // $b$ is unit normal.
}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{AlgebraicStructureTraits}
\end{ccAdvanced}
\end{ccRefConcept}