mirror of https://github.com/CGAL/cgal
39 lines
1.1 KiB
TeX
39 lines
1.1 KiB
TeX
|
|
|
|
\begin{ccRefConcept}{AlgebraicStructureTraits::IntegralSqrt}
|
|
|
|
\begin{ccAdvanced}
|
|
\ccDefinition
|
|
|
|
\ccc{AdaptableBinaryFunction} providing an integral square root.
|
|
|
|
An ring element $a$ is said to be is an square if there exists a ring element $b$ such
|
|
that $a= b*b$. Since the ring represented is an integral domain,
|
|
$b$ is uniquely defined up to multiplication by units.
|
|
|
|
\ccRefines
|
|
|
|
\ccc{AdaptableUnaryFunction}
|
|
|
|
\ccTypes
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccTypedef{typedef bool result_type;}{}\ccGlue
|
|
\ccTypedef{typedef AlgebraicStructureTraits::AS first_argument_type;}{}\ccGlue
|
|
\ccTypedef{typedef AlgebraicStructureTraits::AS second_argument_type;}{}
|
|
|
|
\ccOperations
|
|
\ccMethod{result_type operator()(const first_argument_type& a,
|
|
second_argument_type& b);}
|
|
{ return {\tt true} in case $a$ is a perfect square, i.e. $a = b*b$.\\
|
|
postcond: $unit\_part(b) = 1$. // $b$ is unit normal.
|
|
}
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{AlgebraicStructureTraits}
|
|
\end{ccAdvanced}
|
|
|
|
\end{ccRefConcept} |