mirror of https://github.com/CGAL/cgal
41 lines
1.1 KiB
TeX
41 lines
1.1 KiB
TeX
\begin{ccRefConcept}{AlgebraicStructureTraits::Sqrt}
|
|
|
|
\ccDefinition
|
|
|
|
\ccc{AdaptableUnaryFunction} providing the square root.
|
|
|
|
\ccRefines
|
|
|
|
\ccc{AdaptableUnaryFunction}
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccTypes
|
|
\ccTypedef{typedef AlgebraicStructureTraits::AS result_type;}{}\ccGlue
|
|
\ccTypedef{typedef AlgebraicStructureTraits::AS first_argument_type;}{}
|
|
|
|
\ccOperations
|
|
\ccMethod{result_type operator()(
|
|
const first_argument_type& x);}{ returns $\sqrt(x)$.\\
|
|
{\tt
|
|
|
|
NOTE: There are models that provide an exact sqrt i.e. CORE::Expr
|
|
There are models that provide an inexact sqrt i.e. double \\
|
|
|
|
BUT FROM EXACUS: \\
|
|
A number type NT(here AS) may provide this functor even if the set of
|
|
numbers it
|
|
models does not contain real square roots in general.
|
|
The most important example are number types modeling the integers.
|
|
For them, Sqrt()(x) has to return the largest integer not exceeding
|
|
the square root of x.\\}
|
|
|
|
}
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{AlgebraicStructureTraits}
|
|
|
|
\end{ccRefConcept}
|