mirror of https://github.com/CGAL/cgal
206 lines
6.8 KiB
C++
206 lines
6.8 KiB
C++
// Copyright (c) 2007-09 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
// Author(s) : Pierre Alliez and Laurent Saboret
|
|
|
|
#ifndef CGAL_AVERAGE_SPACING_3_H
|
|
#define CGAL_AVERAGE_SPACING_3_H
|
|
|
|
#include <CGAL/Search_traits_3.h>
|
|
#include <CGAL/Orthogonal_k_neighbor_search.h>
|
|
#include <CGAL/property_map.h>
|
|
#include <CGAL/point_set_processing_assertions.h>
|
|
|
|
#include <iterator>
|
|
#include <list>
|
|
|
|
namespace CGAL {
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Private section
|
|
// ----------------------------------------------------------------------------
|
|
namespace internal {
|
|
|
|
|
|
/// Computes average spacing of one query point from K nearest neighbors.
|
|
///
|
|
/// @commentheading Precondition: k >= 2.
|
|
///
|
|
/// @commentheading Template Parameters:
|
|
/// @param Kernel Geometric traits class.
|
|
/// @param Tree KD-tree.
|
|
///
|
|
/// @return average spacing (scalar).
|
|
template < typename Kernel,
|
|
typename Tree >
|
|
typename Kernel::FT
|
|
compute_average_spacing(const typename Kernel::Point_3& query, ///< 3D point whose spacing we want to compute
|
|
Tree& tree, ///< KD-tree
|
|
unsigned int k) ///< number of neighbors
|
|
{
|
|
// basic geometric types
|
|
typedef typename Kernel::FT FT;
|
|
typedef typename Kernel::Point_3 Point;
|
|
typedef typename Kernel::Plane_3 Plane;
|
|
typedef typename Kernel::Vector_3 Vector;
|
|
|
|
// types for K nearest neighbors search
|
|
typedef Search_traits_3<Kernel> Tree_traits;
|
|
typedef Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
|
|
typedef typename Neighbor_search::iterator Search_iterator;
|
|
|
|
// performs k + 1 queries (if unique the query point is
|
|
// output first). search may be aborted when k is greater
|
|
// than number of input points
|
|
Neighbor_search search(tree,query,k+1);
|
|
Search_iterator search_iterator = search.begin();
|
|
FT sum_distances = (FT)0.0;
|
|
unsigned int i;
|
|
for(i=0;i<(k+1);i++)
|
|
{
|
|
if(search_iterator == search.end())
|
|
break; // premature ending
|
|
|
|
Point p = search_iterator->first;
|
|
sum_distances += std::sqrt(CGAL::squared_distance(query,p));
|
|
search_iterator++;
|
|
}
|
|
|
|
// output average spacing
|
|
return sum_distances / (FT)i;
|
|
}
|
|
|
|
|
|
} /* namespace internal */
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Public section
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
|
/// Computes average spacing from k nearest neighbors.
|
|
///
|
|
/// @commentheading Precondition: k >= 2.
|
|
///
|
|
/// @commentheading Template Parameters:
|
|
/// @param InputIterator iterator over input points.
|
|
/// @param PointPMap is a model of boost::ReadablePropertyMap with a value_type = Point_3<Kernel>.
|
|
/// It can be omitted if InputIterator value_type is convertible to Point_3<Kernel>.
|
|
/// @param Kernel Geometric traits class.
|
|
/// It can be omitted and deduced automatically from PointPMap value_type.
|
|
///
|
|
/// @return average spacing (scalar).
|
|
|
|
// This variant requires the kernel.
|
|
template <typename InputIterator,
|
|
typename PointPMap,
|
|
typename Kernel
|
|
>
|
|
typename Kernel::FT
|
|
compute_average_spacing(
|
|
InputIterator first, ///< iterator over the first input point.
|
|
InputIterator beyond, ///< past-the-end iterator over the input points.
|
|
PointPMap point_pmap, ///< property map InputIterator -> Point_3
|
|
unsigned int k, ///< number of neighbors.
|
|
const Kernel& /*kernel*/) ///< geometric traits.
|
|
{
|
|
// basic geometric types
|
|
typedef typename Kernel::Point_3 Point;
|
|
|
|
// types for K nearest neighbors search structure
|
|
typedef typename Kernel::FT FT;
|
|
typedef Search_traits_3<Kernel> Tree_traits;
|
|
typedef Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
|
|
typedef typename Neighbor_search::Tree Tree;
|
|
|
|
// precondition: at least one element in the container.
|
|
// to fix: should have at least three distinct points
|
|
// but this is costly to check
|
|
CGAL_point_set_processing_precondition(first != beyond);
|
|
|
|
// precondition: at least 2 nearest neighbors
|
|
CGAL_point_set_processing_precondition(k >= 2);
|
|
|
|
// Instanciate a KD-tree search.
|
|
// Note: We have to convert each input iterator to Point_3.
|
|
std::vector<Point> kd_tree_points;
|
|
for(InputIterator it = first; it != beyond; it++)
|
|
{
|
|
Point point = get(point_pmap, it);
|
|
kd_tree_points.push_back(point);
|
|
}
|
|
Tree tree(kd_tree_points.begin(), kd_tree_points.end());
|
|
|
|
// iterate over input points, compute and output normal
|
|
// vectors (already normalized)
|
|
FT sum_spacings = (FT)0.0;
|
|
unsigned int nb_points = 0;
|
|
for(InputIterator it = first; it != beyond; it++)
|
|
{
|
|
sum_spacings += internal::compute_average_spacing<Kernel,Tree>(get(point_pmap,it),tree,k);
|
|
nb_points++;
|
|
}
|
|
|
|
// return average spacing
|
|
return sum_spacings / (FT)nb_points;
|
|
}
|
|
|
|
/// @cond SKIP_IN_MANUAL
|
|
// This variant deduces the kernel from the iterator type.
|
|
template <typename InputIterator,
|
|
typename PointPMap
|
|
>
|
|
typename Kernel_traits<typename boost::property_traits<PointPMap>::value_type>::Kernel::FT
|
|
compute_average_spacing(
|
|
InputIterator first, ///< iterator over the first input point.
|
|
InputIterator beyond, ///< past-the-end iterator over the input points.
|
|
PointPMap point_pmap, ///< property map InputIterator -> Point_3
|
|
unsigned int k) ///< number of neighbors
|
|
{
|
|
typedef typename boost::property_traits<PointPMap>::value_type Point;
|
|
typedef typename Kernel_traits<Point>::Kernel Kernel;
|
|
return compute_average_spacing(
|
|
first,beyond,
|
|
point_pmap,
|
|
k,
|
|
Kernel());
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond SKIP_IN_MANUAL
|
|
// This variant creates a default point property map = Dereference_property_map.
|
|
template < typename InputIterator >
|
|
typename Kernel_traits<typename std::iterator_traits<InputIterator>::value_type>::Kernel::FT
|
|
compute_average_spacing(
|
|
InputIterator first, ///< iterator over the first input point.
|
|
InputIterator beyond, ///< past-the-end iterator over the input points.
|
|
unsigned int k) ///< number of neighbors.
|
|
{
|
|
return compute_average_spacing(
|
|
first,beyond,
|
|
make_dereference_property_map(first),
|
|
k);
|
|
}
|
|
/// @endcond
|
|
|
|
|
|
} //namespace CGAL
|
|
|
|
#endif // CGAL_AVERAGE_SPACING_3_H
|
|
|