cgal/Packages/Partition_2/include/CGAL/Rotation_tree_2.C

194 lines
5.5 KiB
C

// ============================================================================
//
// Copyright (c) 2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------------
//
// release : $CGAL_Revision $
// release_date : $CGAL_Date $
//
// file : include/CGAL/Rotation_tree_2.C
// package : $CGAL_Package: Partition_2 $
// maintainer : Susan Hert <hert@mpi-sb.mpg.de>
// chapter : Planar Polygon Partitioning
//
// revision : $Revision$
// revision_date : $Date$
//
// author(s) : Susan Hert <hert@mpi-sb.mpg.de>
//
// coordinator : MPI (Susan Hert <hert@mpi-sb.mpg.de>)
//
// implementation: Rotation tree for visibility graph computation
// ============================================================================
#include <iostream>
#include <CGAL/ch_utils.h>
namespace CGAL {
/*
template<class Traits>
template<class ForwardIterator>
Rotation_tree_2<Traits>::Rotation_tree_2(ForwardIterator first,
ForwardIterator beyond)
{
typedef typename Traits::R R;
typedef typename Traits::R::FT FT;
typedef typename Traits::Less_xy_2 Less_xy_2;
typedef ch_Binary_predicate_reversor<Point_2, Less_xy_2> Greater_xy_2;
for (ForwardIterator it = first; it != beyond; it++)
push_back(*it);
sort(Greater_xy_2(Traits().less_xy_2_object()));
unique();
// b is the point with the largest x coordinate
Node largest_x = front();
// push the point p_minus_infinity
push_front(Point_2( CGAL::to_double(largest_x.x())+1,
-CGAL::to_double(largest_x.y())));
// push the point p_infinity
push_front(Point_2(CGAL::to_double(largest_x.x())+1,
CGAL::to_double(largest_x.y())));
_p_inf = begin(); // record the iterators to these extreme points
_p_minus_inf = begin(); _p_minus_inf++;
Self_iterator root = begin(); // p_infinity
Self_iterator child = root;
child++; // now points to p_minus_inf
set_rightmost_child(child, root); // make p_minus_inf a child of p_inf
root++; // now points to p_minus_inf
child++; // now points to p_0
while (child != end()) // make all points children of p_minus_inf
{
set_rightmost_child(child,root);
child++;
}
}
*/
// makes *p the rightmost child of *q
template<class Traits>
void Rotation_tree_2<Traits>::set_rightmost_child(Self_iterator p,
Self_iterator q)
{
CGAL_assertion(q != end());
if (p != end())
{
(*p).clear_right_sibling();
if (rightmost_child(q) != end())
{
(*p).set_left_sibling(rightmost_child(q));
(*rightmost_child(q)).set_right_sibling(p);
}
else
(*p).clear_left_sibling();
(*p).set_parent(q);
(*q).set_rightmost_child(p);
}
else
{
(*q).clear_rightmost_child();
}
}
// makes *p the left sibling of *q
template <class Traits>
void Rotation_tree_2<Traits>::set_left_sibling(Self_iterator p,
Self_iterator q)
{
if (q == end()) return;
if (p != end())
{
if (left_sibling(q) != end())
{
(*left_sibling(q)).set_right_sibling(p);
(*p).set_left_sibling(left_sibling(q));
}
else
(*p).clear_left_sibling();
(*q).set_left_sibling(p);
(*p).set_right_sibling(q);
set_parent(parent(q),p);
}
else
{
if (left_sibling(q) != end())
(*(*q).left_sibling()).clear_right_sibling();
(*q).clear_left_sibling();
}
}
// makes p the right sibling of q
template <class Traits>
void Rotation_tree_2<Traits>::set_right_sibling(Self_iterator p,
Self_iterator q)
{
if (q == end()) return;
if (p != end())
{
if (right_sibling(q) != end())
{
(*right_sibling(q)).set_left_sibling(p);
(*p).set_right_sibling(right_sibling(q));
}
else
(*p).clear_right_sibling();
(*q).set_right_sibling(p);
(*p).set_left_sibling(q);
set_parent(parent(q),p);
}
else
{
if (right_sibling(q) != end())
(*right_sibling(q)).clear_left_sibling();
(*q).clear_right_sibling();
}
}
// NOTE: this function does not actually remove the node p from the
// list; it only reorganizes the pointers so this node is not
// in the tree structure anymore
template <class Traits>
void Rotation_tree_2<Traits>::erase(Self_iterator p)
{
CGAL_assertion((*p).is_a_leaf());
Self_iterator s;
s = right_sibling(p);
if (s != end())
set_left_sibling(left_sibling(p),s);
s = left_sibling(p);
if (s != end())
set_right_sibling(right_sibling(p),s);
s = parent(p);
// if p was the rightmost child of its parent, then set its left
// sibling as the new rightmost child
if (rightmost_child(s) == p)
set_rightmost_child(left_sibling(p),s);
}
template <class Traits>
std::ostream& operator<<(std::ostream& os, const Rotation_tree_2<Traits>& tree)
{
typename Rotation_tree_2<Traits>::const_iterator it;
for (it = tree.begin(); it != tree.end(); it++)
os << *it << " " << std::endl;
return os;
}
}