cgal/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/UniqueFactorizationDomain.tex

62 lines
1.8 KiB
TeX

\begin{ccRefConcept}{UniqueFactorizationDomain}
\ccDefinition
A model of \ccc{UniqueFactorizationDomain} is an \ccc{IntegralDomain} with the
additional property
that the ring it represents is a unique factorization domain
(a.k.a. UFD or factorial ring), meaning that every non-zero non-unit
element has a factorization into irreducible elements that is unique
up to order and up to multiplication by invertible elements (units).
(An irreducible element is a non-unit ring element that cannot be factored
further into two non-unit elements. In a UFD, the irreducible elements
are precisely the prime elements.)
In a UFD, any two elements, not both zero, possess a greatest common
divisor (gcd).
Moreover, \ccc{CGAL::Algebraic_structure_traits< UniqueFactorizationDomain >}
is a model of \ccc{AlgebraicStructureTraits} providing:\\
- \ccc{CGAL::Algebraic_structure_traits< UniqueFactorizationDomain >::Algebraic_type}
derived from \ccc{Unique_factorization_domain_tag} \\
- \ccc{CGAL::Algebraic_structure_traits< UniqueFactorizationDomain >::Gcd} a model of \ccc{AlgebraicStructureTraits::Gcd}\\
\ccRefines
\ccc{IntegralDomain}
\ccSeeAlso
\ccRefIdfierPage{IntegralDomainWithoutDivision}\\
\ccRefIdfierPage{IntegralDomain}\\
\ccRefIdfierPage{UniqueFactorizationDomain}\\
\ccRefIdfierPage{EuclideanRing}\\
\ccRefIdfierPage{Field}\\
\ccRefIdfierPage{FieldWithSqrt}\\
\ccRefIdfierPage{FieldWithKthRoot}\\
\ccRefIdfierPage{FieldWithRootOf}\\
\ccRefIdfierPage{AlgebraicStructureTraits}\\
%\ccHasModels
%\ccc{int}\\
%\ccc{long}\\
%\ccc{CGAL::Gmpz} \\
%\ccc{CGAL::Gmpzf} \\
%\ccc{mpz_class} \\
%\ccc{leda_integer} \\
%\ccc{CORE::BigInt} \\
%\ccc{CGAL::MP_Float} ( exact version )\\
%\ccc{CGAL::Lazy_exact_nt< NT > } (depends on NT) \\
%\ccc{CGAL::Polynomial< T >} \\
\end{ccRefConcept}