cgal/Packages/H2/include/CGAL/Homogeneous/VectorH2.h

412 lines
10 KiB
C++

// ======================================================================
//
// Copyright (c) 1999 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Homogeneous/VectorH2.h
// package : H2
// revision : $Revision$
// revision_date : $Date$
// author(s) : Stefan Schirra
//
// coordinator : MPI, Saarbruecken
// ======================================================================
#ifndef CGAL_HOMOGENEOUS_VECTOR_2_h
#define CGAL_HOMOGENEOUS_VECTOR_2_h
#include <CGAL/Origin.h>
CGAL_BEGIN_NAMESPACE
template < class R_ >
class VectorH2
: public R_::Vector_handle_2
{
CGAL_VC7_BUG_PROTECTED
typedef typename R_::FT FT;
typedef typename R_::RT RT;
typedef typename R_::Point_2 Point_2;
typedef typename R_::Direction_2 Direction_2;
typedef typename R_::Vector_2 Vector_2;
typedef typename R_::Aff_transformation_2 Aff_transformation_2;
typedef typename R_::Vector_handle_2 Vector_handle_2_;
typedef typename Vector_handle_2_::element_type Vector_ref_2;
public:
typedef R_ R;
VectorH2()
: Vector_handle_2_ ( Vector_ref_2()) {}
VectorH2(const Point_2& a, const Point_2& b)
: Vector_handle_2_ (b-a) {}
VectorH2(const Null_vector &)
: Vector_handle_2_ ( Vector_ref_2(RT(0), RT(0), RT(1) )) {}
VectorH2(const RT& x, const RT& y)
: Vector_handle_2_ ( Vector_ref_2( x, y, RT(1) )) {}
VectorH2(const RT& x, const RT& y, const RT& w )
{
if ( w >= RT(0) )
{ initialize_with( Vector_ref_2( x, y, w)); }
else
{ initialize_with( Vector_ref_2(-x, -y, -w)); }
}
bool operator==( const VectorH2<R>& v) const;
bool operator!=( const VectorH2<R>& v) const;
bool operator==( const Null_vector&) const;
bool operator!=( const Null_vector& v) const;
const RT & hx() const { return Ptr()->e0; };
const RT & hy() const { return Ptr()->e1; };
const RT & hw() const { return Ptr()->e2; };
FT x() const { return FT(hx()) / FT(hw()); };
FT y() const { return FT(hy()) / FT(hw()); };
FT cartesian(int i) const;
const RT & homogeneous(int i) const;
FT operator[](int i) const;
int dimension() const;
Direction_2 direction() const;
Vector_2 transform(const Aff_transformation_2& t ) const;
Vector_2 perpendicular(const Orientation& o ) const;
Vector_2 operator+(const VectorH2 &v) const;
Vector_2 operator-(const VectorH2 &v) const;
FT operator*(const VectorH2 &v) const;
Vector_2 operator-() const;
Vector_2 opposite() const;
Vector_2 operator*(const RT &f) const;
Vector_2 operator*(const FT &f) const;
Vector_2 operator/(const RT &f) const;
Vector_2 operator/(const FT &f) const;
// undocumented:
VectorH2(const Direction_2 & dir)
: Vector_handle_2_ ( dir) {}
VectorH2(const Point_2 & p)
: Vector_handle_2_ ( p) {}
};
#ifdef CGAL_CFG_TYPENAME_BUG
#define typename
#endif
template < class R >
inline
bool
VectorH2<R>::operator==( const Null_vector&) const
{ return (hx() == RT(0)) && (hy() == RT(0)); }
template < class R >
inline
bool
VectorH2<R>::operator!=( const Null_vector& v) const
{ return !(*this == v); }
template < class R >
CGAL_KERNEL_INLINE
bool
VectorH2<R>::operator==( const VectorH2<R>& v) const
{
return ( (hx() * v.hw() == v.hx() * hw() )
&&(hy() * v.hw() == v.hy() * hw() ) );
}
template < class R >
inline
bool
VectorH2<R>::operator!=( const VectorH2<R>& v) const
{ return !(*this == v); } /* XXX */
template < class R >
CGAL_KERNEL_INLINE
typename VectorH2<R>::FT
VectorH2<R>::cartesian(int i) const
{
CGAL_kernel_precondition( (i==0 || i==1) );
if (i==0)
return x();
return y();
}
template < class R >
CGAL_KERNEL_INLINE
const typename VectorH2<R>::RT &
VectorH2<R>::homogeneous(int i) const
{
CGAL_kernel_precondition( (i>=0) && (i<=2) );
if (i==0)
return hx();
if (i==1)
return hy();
return hw();
}
template < class R >
inline
typename VectorH2<R>::FT
VectorH2<R>::operator[](int i) const
{ return cartesian(i); }
template < class R >
inline
int
VectorH2<R>::dimension() const
{ return 2; }
template < class R >
CGAL_KERNEL_INLINE
typename VectorH2<R>::Direction_2
VectorH2<R>::direction() const
{ return Direction_2(*this); }
template < class R >
inline
typename VectorH2<R>::Vector_2
VectorH2<R>::operator-() const
{ return VectorH2<R>(- hx(), - hy(), hw() ); }
template < class R >
inline
typename VectorH2<R>::Vector_2
VectorH2<R>::opposite() const
{ return VectorH2<R>(- hx(), - hy(), hw() ); }
template <class R>
CGAL_KERNEL_INLINE
typename VectorH2<R>::Vector_2
VectorH2<R>::operator+(const VectorH2<R>& v) const
{
return VectorH2<R>( hx()*v.hw() + v.hx()*hw(),
hy()*v.hw() + v.hy()*hw(),
hw()*v.hw() );
}
template <class R>
CGAL_KERNEL_INLINE
typename VectorH2<R>::Vector_2
VectorH2<R>::operator-(const VectorH2<R>& v) const
{
return VectorH2<R>( hx()*v.hw() - v.hx()*hw(),
hy()*v.hw() - v.hy()*hw(),
hw()*v.hw() );
}
template <class R>
CGAL_KERNEL_INLINE
typename VectorH2<R>::FT
VectorH2<R>::operator*(const VectorH2<R>& v) const
{
typedef typename R::RT RT;
typedef typename R::FT FT;
return FT( RT(hx()*v.hx() + hy()*v.hy()) ) / FT( RT(hw()*v.hw() ) );
}
template <class R>
CGAL_KERNEL_INLINE
typename VectorH2<R>::Vector_2
VectorH2<R>::operator/(const typename VectorH2<R>::RT& f) const
{ return VectorH2<R>( hx(), hy(), hw()*f ); }
template <class R>
CGAL_KERNEL_INLINE
typename VectorH2<R>::Vector_2
VectorH2<R>::operator/(const typename VectorH2<R>::FT& f) const
{ return VectorH2<R>( hx()*f.denominator(), hy()*f.denominator(),
hw()*f.numerator() ); }
template <class R>
CGAL_KERNEL_INLINE
typename VectorH2<R>::Vector_2
VectorH2<R>::operator*(const typename VectorH2<R>::RT& f) const
{ return VectorH2<R>( hx()*f, hy()*f, hw() ); }
template <class R>
CGAL_KERNEL_INLINE
typename VectorH2<R>::Vector_2
VectorH2<R>::operator*(const typename VectorH2<R>::FT& f) const
{ return VectorH2<R>( hx()*f.numerator(), hy()*f.numerator(),
hw()*f.denominator() ); }
template <class R>
CGAL_KERNEL_INLINE
typename R::Vector_2
operator*(const typename R::RT& f, const VectorH2<R>& v)
{ return VectorH2<R>( v.hx()*f, v.hy()*f, v.hw() ); }
template <class R>
inline
PointH2<R>
origin_plus_vector(const VectorH2<R>& v)
{ return PointH2<R>( v ); }
template <class R>
inline
typename R::Point_2
operator+(const Origin&, const VectorH2<R>& v)
{ return origin_plus_vector( v ); }
template <class R>
inline
typename R::Point_2
origin_minus_vector(const VectorH2<R>& v)
{ return PointH2<R>( v.opposite() ); }
template <class R>
inline
typename R::Point_2
operator-(const Origin&, const VectorH2<R>& v)
{ return origin_minus_vector( v ); }
template <class R>
inline
typename R::Vector_2
point_minus_origin(const PointH2<R>& p)
{ return VectorH2<R>( p ); }
template <class R>
inline
typename R::Vector_2
operator-(const PointH2<R>& p, const Origin&)
{ return point_minus_origin( p ); }
template <class R>
inline
typename R::Vector_2
origin_minus_point(const PointH2<R>& p)
{ return VectorH2<R>( p ).opposite(); }
template <class R>
inline
typename R::Vector_2
operator-(const Origin&, const PointH2<R>& p)
{ return origin_minus_point( p ); }
template <class R>
CGAL_KERNEL_INLINE
typename R::Point_2
operator+(const PointH2<R>& p, const VectorH2<R>& v)
{
return PointH2<R>( p.hx()*v.hw() + v.hx()*p.hw(),
p.hy()*v.hw() + v.hy()*p.hw(),
p.hw()*v.hw() );
}
template <class R>
CGAL_KERNEL_INLINE
typename R::Point_2
operator-(const PointH2<R>& p, const VectorH2<R>& v)
{
return PointH2<R>( p.hx()*v.hw() - v.hx()*p.hw(),
p.hy()*v.hw() - v.hy()*p.hw(),
p.hw()*v.hw() );
}
template <class R>
CGAL_KERNEL_INLINE
typename R::Vector_2
operator-(const PointH2<R>& p, const PointH2<R>& q)
{
return VectorH2<R>( p.hx()*q.hw() - q.hx()*p.hw(),
p.hy()*q.hw() - q.hy()*p.hw(),
p.hw()*q.hw() );
}
#ifdef CGAL_CFG_TYPENAME_BUG
#undef typename
#endif
template < class R >
CGAL_KERNEL_INLINE
typename VectorH2<R>::Vector_2
VectorH2<R>::perpendicular(const Orientation& o) const
{
CGAL_kernel_precondition(o != COLLINEAR);
if (o == COUNTERCLOCKWISE)
{
return VectorH2<R>(-hy(), hx(), hw());
}
else
{
return VectorH2<R>(hy(), -hx(), hw());
}
}
template < class R >
inline
typename VectorH2<R>::Vector_2
VectorH2<R>::
transform(const typename VectorH2<R>::Aff_transformation_2& t) const
{ return t.transform(*this); }
#ifndef CGAL_NO_OSTREAM_INSERT_VECTORH2
template < class R >
std::ostream &
operator<<(std::ostream &os, const VectorH2<R> &p)
{
switch(os.iword(IO::mode))
{
case IO::ASCII :
return os << p.hx() << ' ' << p.hy() << ' ' << p.hw();
case IO::BINARY :
write(os, p.hx());
write(os, p.hy());
write(os, p.hw());
return os;
default:
return os << "VectorH2(" << p.hx() << ", "
<< p.hy() << ", "
<< p.hw() << ')';
}
}
#endif // CGAL_NO_OSTREAM_INSERT_VECTORH2
#ifndef CGAL_NO_ISTREAM_EXTRACT_VECTORH2
template < class R >
std::istream &
operator>>(std::istream &is, VectorH2<R> &p)
{
typename R::RT hx, hy, hw;
switch(is.iword(IO::mode))
{
case IO::ASCII :
is >> hx >> hy >> hw;
break;
case IO::BINARY :
read(is, hx);
read(is, hy);
read(is, hw);
break;
default:
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
p = VectorH2<R>(hx, hy, hw);
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_VECTORH2
CGAL_END_NAMESPACE
#endif // CGAL_HOMOGENEOUS_VECTOR_2_h