cgal/Packages/Planar_map/include/CGAL/Pm_segment_traits.h

301 lines
11 KiB
C++

// ======================================================================
//
// Copyright (c) 2001 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release : $CGAL_Revision: CGAL-2.4-I-40 $
// release_date : $CGAL_Date: 2001/12/28 $
//
// file : include/CGAL/Pm_segment_traits.h
// package : Planar_map (5.80)
// maintainer : Eyal Flato <flato@math.tau.ac.il>
// author(s) : Oren Nechushtan <theoren@math.tau.ac.il>
// Iddo Hanniel <hanniel@math.tau.ac.il>
// Shai Hirsch <shaihi@post.tau.ac.il>
//
// coordinator : Tel-Aviv University (Dan Halperin halperin<@math.tau.ac.il>)
//
// ======================================================================
#ifndef CGAL_PM_SEGMENT_TRAITS_H
#define CGAL_PM_SEGMENT_TRAITS_H
// Status on Dec. 4th, 2001
// Class was converted to use as much of the kernel as currently possible
CGAL_BEGIN_NAMESPACE
template <class Kernel_>
class Pm_segment_traits
{
public:
typedef Kernel_ Kernel;
// traits objects
typedef typename Kernel::Point_2 Point_2;
typedef Point_2 Point; // for backward compatability
typedef typename Kernel::Segment_2 X_curve;
// Things I get from the kernel
// ----------------------------
//
// Future interface:
//
// typedef typename Kernel::Is_vertical_2 Is_vertical_2;
// typedef typename Kernel::Compare_y_at_x_2 Compare_y_at_x_2;
// typedef typename Kernel::Counterclockwise_in_between_2
// Counterclockwise_in_between_2;
// typedef typename Kernel::Equal_2 Equal_2;
// typedef typename Kernel::Has_on_2 Has_on_2;
// typedef typename Kernel::Compare_x_2 Compare_x_2;
// typedef typename Kernel::Compare_y_2 Compare_y_2;
// typedef typename Kernel::Construct_vertex_2 Construct_vertex_2;
// Implementation
//
// typedef typename Kernel::Less_x_2 Less_x_2;
// typedef typename Kernel::Construct_opposite_segment_2
// Construct_opposite_segment_2;
// typedef typename Kernel::Construct_line_2 Construct_line_2;
// typedef typename Kernel::Construct_direction_2 Construct_direction_2;
// typedef typename Kernel::Construct_vertical_projected_point_2
// onstruct_vertical_projected_point_2;
// Currently, I leave this in the traits
// Maybe we can change the usage inside Planar_map_2
typedef enum
{
UNDER_CURVE = -1,
CURVE_NOT_IN_RANGE = 0,
ABOVE_CURVE = 1,
ON_CURVE = 2
} Curve_point_status;
private:
Kernel m_kernel;
public:
// Creation
Pm_segment_traits() {}
Pm_segment_traits(const Kernel& kernel) : m_kernel(kernel) {}
// Access to curve source
Point_2 curve_source(const X_curve & cv) const
{
return m_kernel.construct_vertex_2_object()(cv, 0);
}
// Access to curve target
Point_2 curve_target(const X_curve & cv) const
{
return m_kernel.construct_vertex_2_object()(cv, 1);
}
// Answers true iff the curve is vertical.
bool curve_is_vertical(const X_curve & cv) const
{
return m_kernel.is_vertical_2_object()(cv);
}
// Returns the curve-point status of the input objects
Curve_point_status
curve_get_point_status(const X_curve &cv, const Point_2 & p) const
{
if ( ! curve_is_in_x_range(cv, p))
return CURVE_NOT_IN_RANGE;
if ( ! curve_is_vertical(cv))
{
// Calculate vertical projection on curve
const Point_2 & proj =
construct_vertical_projected_point_2_object(cv, p);
int res = m_kernel.compare_y_2_object()(p, proj);
if (res == SMALLER) return UNDER_CURVE;
if (res == LARGER) return ABOVE_CURVE;
return ON_CURVE;
}
else
{
if (is_lower(p,lowest(curve_source(cv),curve_target(cv))))
return UNDER_CURVE;
if (is_higher(p,highest(curve_source(cv),curve_target(cv))))
return ABOVE_CURVE;
return ON_CURVE;
}
}
// Compares the y value of two curves at an x value of the input point
Comparison_result
curve_compare_at_x(const X_curve &cv1, const X_curve &cv2, const Point_2 &q)
const
{
typename Kernel::Line_2 l1 = m_kernel.construct_line_2_object()(cv1);
typename Kernel::Line_2 l2 = m_kernel.construct_line_2_object()(cv2);
return m_kernel.compare_y_at_x_2_object()(q, l1, l2);
}
// Compare the y value of two curves in an epsilon environment to
// the left of the x value of the input point
Comparison_result
curve_compare_at_x_left(const X_curve &cv1, const X_curve &cv2,
const Point_2 &q) const
{
// If one of the curves is vertical then return EQUAL.
if ( curve_is_vertical(cv1) || (curve_is_vertical(cv2)) ) return EQUAL;
// If one of the curves is not defined at q then return EQUAL.
if ( ! is_left(leftmost(cv1.source(), cv1.target()), q) ) return EQUAL;
if ( ! is_left(leftmost(cv2.source(), cv2.target()), q) ) return EQUAL;
Comparison_result r = curve_compare_at_x(cv1, cv2, q);
if ( r != EQUAL )
return r; // since the curve is continous
// <cv2> and <cv1> meet at a point with the same x-coordinate as q
// compare their derivatives
return m_kernel.compare_slope_2_object()(cv2, cv1);
// return compare_value(curve_derivative(cv2), curve_derivative(cv1));
}
// Compare the y value of two curves in an epsilon environment to
// the right of the x value of the input point
Comparison_result
curve_compare_at_x_right(const X_curve &cv1, const X_curve &cv2,
const Point_2 & q) const
{
// If one of the curves is vertical then return EQUAL.
if ( curve_is_vertical(cv1) || (curve_is_vertical(cv2)) ) return EQUAL;
// If one of the curves is not defined at q then return EQUAL.
if ( ! is_right(rightmost(cv1.source(), cv1.target()), q) ) return EQUAL;
if ( ! is_right(rightmost(cv2.source(), cv2.target()), q) ) return EQUAL;
Comparison_result r = curve_compare_at_x(cv1, cv2, q);
if ( r != EQUAL)
return r; // since the curve is continous
// <cv1> and <cv2> meet at a point with the same x-coordinate as q
// compare their derivatives
return m_kernel.compare_slope_2_object()(cv1, cv2);
//return compare_value(curve_derivative(cv1), curve_derivative(cv2));
}
// done
// (Check what happens if cv == first, if first == second
// and if both.)
bool curve_is_between_cw(const X_curve &cv,
const X_curve &first,
const X_curve &second,
const Point_2 &point) const
{
typedef typename Kernel::Direction_2 Direction_2;
X_curve my_cv = cv, my_first = first, my_second = second;
if ( curve_source(my_cv) != point ) my_cv = curve_flip(cv);
if ( curve_source(my_first) != point ) my_first = curve_flip(first);
if ( curve_source(my_second)!= point ) my_second = curve_flip(second);
Direction_2 d = m_kernel.construct_direction_2_object()(my_cv);
Direction_2 d1 = m_kernel.construct_direction_2_object()(my_first);
Direction_2 d2 = m_kernel.construct_direction_2_object()(my_second);
return m_kernel.counterclockwise_in_between_2_object()(d, d1, d2);
}
// Compares the x value of two points
Comparison_result compare_x(const Point_2 &p1, const Point_2 &p2) const
{ return m_kernel.compare_x_2_object()(p1, p2); }
// Compares the y value of two points
Comparison_result compare_y(const Point_2 &p1, const Point_2 &p2) const
{ return m_kernel.compare_y_2_object()(p1, p2); }
bool curve_is_same(const X_curve & cv1,const X_curve & cv2) const
{ return m_kernel.equal_2_object()(cv1, cv2); }
// Intorduce Is_in_x_range_2 / Is_in_x_closed_range_2 ?
// This can be implemented on the traits_wrap level by using other
// simpler predicated from the Kernel / traits.
// Used in the Bounding Box, but there it probably get it from
// the Pm's Traits_wrap
bool curve_is_in_x_range(const X_curve & cv, const Point_2 & q) const
{
return !( is_right(q, rightmost(cv.source(), cv.target())) ||
is_left(q, leftmost(cv.source(), cv.target())) );
}
private:
// constructs the opposite segment (with the source and target
// exchanged)
// Used internally and in the Arrangement, so shouldn't be part of
// this interface
X_curve curve_flip(const X_curve &cv) const
{
return m_kernel.construct_opposite_segment_2_object()(cv);
}
// These stuff need to be cached
bool is_left(const Point_2 &p1, const Point_2 &p2) const
{ return m_kernel.less_x_2_object()(p1, p2); }
bool is_right(const Point_2 &p1, const Point_2 &p2) const
{ return m_kernel.less_x_2_object()(p2, p1); }
bool is_same_x(const Point_2 &p1, const Point_2 &p2) const
{ return m_kernel.equal_x_object()(p1, p2); }
bool is_lower(const Point_2 &p1, const Point_2 &p2) const
{ return m_kernel.less_y_2_object()(p1, p2); }
bool is_higher(const Point_2 &p1, const Point_2 &p2) const
{ return m_kernel.less_y_2_object()(p2, p1); }
bool is_same_y(const Point_2 &p1, const Point_2 &p2) const
{ return m_kernel.equal_y_object()(p1, p2); }
bool is_same(const Point_2 &p1, const Point_2 &p2) const
{
return (compare_x(p1, p2) == EQUAL) &&
(compare_y(p1, p2) == EQUAL);
}
const Point_2& leftmost(const Point_2 &p1, const Point_2 &p2) const
{ return (is_left(p1, p2) ? p1 : p2); }
const Point_2& rightmost(const Point_2 &p1, const Point_2 &p2) const
{ return (is_right(p1, p2) ? p1 : p2); }
const Point_2& lowest(const Point_2 &p1, const Point_2 &p2) const
{ return (is_lower(p1, p2) ? p1 : p2); }
const Point_2& highest(const Point_2 &p1, const Point_2 &p2) const
{ return (is_higher(p1, p2) ? p1 : p2); }
// Comment this one ! ##############
Point_2 construct_vertical_projected_point_2_object(const X_curve &cv, const Point_2 & q) const
{
if ( ! curve_is_in_x_range(cv, q) )
return cv.source();
if (curve_is_vertical(cv))
return cv.source();
const Point_2 & a = cv.source();
const Point_2 & b = cv.target();
return Point_2 ((b.hx() * a.hw() - a.hx() * b.hw()) * q.hx() * a.hw(),
(b.hx() * a.hw() - a.hx() * b.hw()) * q.hw() * a.hy() +
(b.hy() * a.hw() - a.hy() * b.hw()) *
(q.hx() * a.hw() - a.hx() * q.hw()),
(b.hx() * a.hw() - a.hx() * b.hw()) * q.hw() * a.hw());
}
};
CGAL_END_NAMESPACE
#endif // CGAL_PM_SEGMENT_EXACT_TRAITS_H