cgal/NewKernel_d/include/CGAL/Kernel_d/function_objects_cartesian.h

1034 lines
40 KiB
C++

#ifndef CGAL_KERNEL_D_FUNCTION_OBJECTS_CARTESIAN_H
#define CGAL_KERNEL_D_FUNCTION_OBJECTS_CARTESIAN_H
#include <CGAL/marcutils.h>
#include <CGAL/Dimension.h>
#include <CGAL/Uncertain.h>
#include <CGAL/store_kernel.h>
#include <CGAL/is_iterator.h>
#include <CGAL/number_utils.h>
#include <CGAL/Kernel/Return_base_tag.h>
#include <CGAL/transforming_iterator.h>
#include <CGAL/transforming_pair_iterator.h>
#include <CGAL/functor_tags.h>
#include <CGAL/functor_properties.h>
#include <CGAL/predicates/sign_of_determinant.h>
#include <functional>
#ifdef CGAL_CXX0X
#include <initializer_list>
#endif
namespace CGAL {
namespace CartesianDKernelFunctors {
namespace internal {
template<class,int> struct Dimension_at_most { enum { value = false }; };
template<int a,int b> struct Dimension_at_most<Dimension_tag<a>,b> {
enum { value = (a <= b) };
};
}
template<class R_,class D_=typename R_::Default_ambient_dimension,bool=internal::Dimension_at_most<D_,6>::value> struct Orientation_of_points : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Orientation_of_points)
typedef R_ R;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_type<R, Orientation_tag>::type result_type;
typedef typename R::LA::Square_matrix Matrix;
template<class Iter>
result_type operator()(Iter f, Iter e)const{
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
Point const& p0=*f++;
int d=pd(p0);
Matrix m(d,d);
for(int i=0;f!=e;++f,++i) {
Point const& p=*f;
for(int j=0;j<d;++j){
m(i,j)=c(p,j)-c(p0,j);
// should we cache the coordinates of p0 in case they are computed?
}
}
return R::LA::sign_of_determinant(CGAL_MOVE(m));
}
#ifdef CGAL_CXX0X
// Since the dimension is at least 2, there are at least 3 points and no ambiguity with iterators.
// template <class...U,class=typename std::enable_if<std::is_same<Dimension_tag<sizeof...(U)-1>,typename R::Default_ambient_dimension>::value>::type>
template <class...U,class=typename std::enable_if<(sizeof...(U)>=3)>::type>
result_type operator()(U&&...u) const {
return operator()({std::forward<U>(u)...});
}
template <class P>
result_type operator()(std::initializer_list<P> l) const {
return operator()(l.begin(),l.end());
}
#else
//should we make it template to avoid instantiation for wrong dim?
//or iterate outside the class?
#define VAR(Z,J,I) m(I,J)=c(p##I,J)-c(x,J);
#define VAR2(Z,I,N) BOOST_PP_REPEAT(N,VAR,I)
#define CODE(Z,N,_) \
result_type operator()(Point const&x, BOOST_PP_ENUM_PARAMS(N,Point const&p)) const { \
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel()); \
Matrix m(N,N); \
BOOST_PP_REPEAT(N,VAR2,N) \
return R::LA::sign_of_determinant(CGAL_MOVE(m)); \
}
BOOST_PP_REPEAT_FROM_TO(7, 10, CODE, _ )
// No need to do it for <=6, since that uses a different code path
#undef CODE
#undef VAR2
#undef VAR
#endif
};
#ifdef CGAL_CXX0X
template<class R_,int d> struct Orientation_of_points<R_,Dimension_tag<d>,true> : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Orientation_of_points)
typedef R_ R;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_type<R, Orientation_tag>::type result_type;
template<class>struct Help;
template<int...I>struct Help<Indices<I...> > {
template<class C,class P,class T> result_type operator()(C const&c,P const&x,T&&t)const{
return sign_of_determinant(c(std::get<I/d>(t),I%d)-c(x,I%d)...);
}
};
template<class P0,class...P> result_type operator()(P0 const&x,P&&...p)const{
static_assert(d==sizeof...(P),"Wrong number of arguments");
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
return Help<typename N_increasing_indices<d*d>::type>()(c,x,std::forward_as_tuple(std::forward<P>(p)...));
}
template<int N,class Iter,class...U> result_type help2(Dimension_tag<N>, Iter f, Iter const&e, U&&...u)const{
auto const&p=*f;
return help2(Dimension_tag<N-1>(),++f,e,std::forward<U>(u)...,p);
}
template<class Iter,class...U> result_type help2(Dimension_tag<0>, Iter CGAL_assertion_code(f), Iter const& CGAL_assertion_code(e), U&&...u)const{
CGAL_assertion(f==e);
return operator()(std::forward<U>(u)...);
}
template<class Iter>
result_type operator()(Iter f, Iter e)const{
return help2(Dimension_tag<d+1>(),f,e);
}
};
#else
#define VAR(Z,J,I) c(p##I,J)-x##J
#define VAR2(Z,I,N) BOOST_PP_ENUM(N,VAR,I)
#define VAR3(Z,N,_) Point const&p##N=*++f;
#define VAR4(Z,N,_) RT const&x##N=c(x,N);
#define CODE(Z,N,_) \
template<class R_> struct Orientation_of_points<R_,Dimension_tag<N>,true> : private Store_kernel<R_> { \
CGAL_FUNCTOR_INIT_STORE(Orientation_of_points) \
typedef R_ R; \
typedef typename Get_type<R, RT_tag>::type RT; \
typedef typename Get_type<R, Point_tag>::type Point; \
typedef typename Get_type<R, Orientation_tag>::type result_type; \
result_type operator()(Point const&x, BOOST_PP_ENUM_PARAMS(N,Point const&p)) const { \
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel()); \
BOOST_PP_REPEAT(N,VAR4,) \
return sign_of_determinant(BOOST_PP_ENUM(N,VAR2,N)); \
} \
template<class Iter> \
result_type operator()(Iter f, Iter CGAL_assertion_code(e))const{ \
Point const&x=*f; \
BOOST_PP_REPEAT(N,VAR3,) \
CGAL_assertion(++f==e); \
return operator()(x,BOOST_PP_ENUM_PARAMS(N,p)); \
} \
};
BOOST_PP_REPEAT_FROM_TO(2, 7, CODE, _ )
#undef CODE
#undef VAR2
#undef VAR
#endif
}
CGAL_KD_DEFAULT_FUNCTOR(Orientation_of_points_tag,(CartesianDKernelFunctors::Orientation_of_points<K>),(Point_tag),(Point_dimension_tag,Compute_point_cartesian_coordinate_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Orientation_of_vectors : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Orientation_of_vectors)
typedef R_ R;
typedef typename Get_type<R, Vector_tag>::type Vector;
typedef typename Get_type<R, Orientation_tag>::type result_type;
typedef typename R::LA::Square_matrix Matrix;
template<class Iter>
result_type operator()(Iter f, Iter e)const{
typename Get_functor<R, Compute_vector_cartesian_coordinate_tag>::type c(this->kernel());
typename Get_functor<R, Point_dimension_tag>::type vd(this->kernel());
// FIXME: Uh? Using it on a vector ?!
Vector const& v0=*f;
int d=vd(v0);
Matrix m(d,d);
for(int j=0;j<d;++j){
m(0,j)=c(v0,j);
}
for(int i=1;++f!=e;++i) {
Vector const& v=*f;
for(int j=0;j<d;++j){
m(i,j)=c(v,j);
}
}
return R::LA::sign_of_determinant(CGAL_MOVE(m));
}
#ifdef CGAL_CXX0X
template <class...U,class=typename std::enable_if<(sizeof...(U)>=3)>::type>
result_type operator()(U&&...u) const {
return operator()({std::forward<U>(u)...});
}
template <class V>
result_type operator()(std::initializer_list<V> l) const {
return operator()(l.begin(),l.end());
}
#else
//TODO
#endif
};
}
CGAL_KD_DEFAULT_FUNCTOR(Orientation_of_vectors_tag,(CartesianDKernelFunctors::Orientation_of_vectors<K>),(Vector_tag),(Point_dimension_tag,Compute_vector_cartesian_coordinate_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Linear_rank : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Linear_rank)
typedef R_ R;
typedef typename Get_type<R, Vector_tag>::type Vector;
// Computing a sensible Uncertain<int> is not worth it
typedef int result_type;
typedef typename R::LA::Dynamic_matrix Matrix;
template<class Iter>
result_type operator()(Iter f, Iter e)const{
typename Get_functor<R, Compute_vector_cartesian_coordinate_tag>::type c(this->kernel());
typename Get_functor<R, Point_dimension_tag>::type vd(this->kernel());
int n=std::distance(f,e);
if (n==0) return 0;
Vector const& v0 = *f;
// FIXME: Uh? Using it on a vector ?!
int d=vd(v0);
Matrix m(d,n);
for(int j=0;j<d;++j){
m(0,j)=c(v0,j);
}
for(int i=0; ++f!=e; ++i){
Vector const& v = *f;
for(int j=0;j<d;++j){
m(i,j)=c(v,j);
}
}
return R::LA::rank(CGAL_MOVE(m));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Linear_rank_tag,(CartesianDKernelFunctors::Linear_rank<K>),(Vector_tag),(Point_dimension_tag,Compute_vector_cartesian_coordinate_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Linearly_independent : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Linearly_independent)
typedef R_ R;
typedef typename Get_type<R, Bool_tag>::type result_type;
template<class Iter>
result_type operator()(Iter f, Iter e)const{
typename Get_functor<R, Point_dimension_tag>::type vd(this->kernel());
int n=std::distance(f,e);
// FIXME: Uh? Using it on a vector ?!
int d=vd(*f);
if (n>d) return false;
typename Get_functor<R, Linear_rank_tag>::type lr(this->kernel());
return lr(f,e) == n;
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Linearly_independent_tag,(CartesianDKernelFunctors::Linearly_independent<K>),(Vector_tag),(Point_dimension_tag,Linear_rank_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Contained_in_linear_hull : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Contained_in_linear_hull)
typedef R_ R;
typedef typename Get_type<R, Vector_tag>::type Vector;
// Computing a sensible Uncertain<bool> is not worth it
typedef bool result_type;
typedef typename R::LA::Dynamic_matrix Matrix;
template<class Iter,class V>
result_type operator()(Iter f, Iter e,V const&w)const{
typename Get_functor<R, Compute_vector_cartesian_coordinate_tag>::type c(this->kernel());
typename Get_functor<R, Point_dimension_tag>::type vd(this->kernel());
int n=std::distance(f,e);
if (n==0) return false;
// FIXME: Uh? Using it on a vector ?!
int d=vd(w);
Matrix m(d,n+1);
for(int i=0; f!=e; ++f,++i){
Vector const& v = *f;
for(int j=0;j<d;++j){
m(i,j)=c(v,j);
}
}
for(int j=0;j<d;++j){
m(n+1,j)=c(w,j);
}
int r1 = R::LA::rank(m);
m.conservativeResize(Eigen::NoChange, n);
int r2 = R::LA::rank(CGAL_MOVE(m));
return r1 == r2;
// This is very very far from optimal...
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Contained_in_linear_hull_tag,(CartesianDKernelFunctors::Contained_in_linear_hull<K>),(Vector_tag),(Point_dimension_tag,Compute_vector_cartesian_coordinate_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Affine_rank : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Affine_rank)
typedef R_ R;
typedef typename Get_type<R, Point_tag>::type Point;
// Computing a sensible Uncertain<int> is not worth it
typedef int result_type;
typedef typename R::LA::Dynamic_matrix Matrix;
template<class Iter>
result_type operator()(Iter f, Iter e)const{
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
int n=std::distance(f,e);
if (n<=1) return n;
--n;
Point const& p0 = *f;
int d=pd(p0);
Matrix m(d,n);
for(int i=0; ++f!=e; ++i){
Point const& p = *f;
for(int j=0;j<d;++j){
m(i,j)=c(p,j)-cp(p0,j);
// TODO: cache p0[j] in case it is computed?
}
}
return R::LA::rank(CGAL_MOVE(m))+1;
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Affine_rank_tag,(CartesianDKernelFunctors::Affine_rank<K>),(Point_tag),(Point_dimension_tag,Compute_point_cartesian_coordinate_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Affinely_independent : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Affinely_independent)
typedef R_ R;
typedef typename Get_type<R, Bool_tag>::type result_type;
template<class Iter>
result_type operator()(Iter f, Iter e)const{
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
int n=std::distance(f,e);
int d=pd(*f);
if (n>d+1) return false;
typename Get_functor<R, Affine_rank_tag>::type ar(this->kernel());
return ar(f,e) == n;
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Affinely_independent_tag,(CartesianDKernelFunctors::Affinely_independent<K>),(Point_tag),(Point_dimension_tag,Affine_rank_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Contained_in_simplex : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Contained_in_simplex)
typedef R_ R;
typedef typename Get_type<R, Point_tag>::type Point;
// Computing a sensible Uncertain<*> is not worth it
typedef typename Get_type<R, Bounded_side_tag>::type result_type;
typedef typename Increment_dimension<typename R::Default_ambient_dimension>::type D1;
typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type D2;
typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
typedef typename LA::Dynamic_matrix Matrix;
typedef typename LA::Dynamic_vector DynVec;
typedef typename LA::Vector Vec;
template<class Iter, class P>
result_type operator()(Iter f, Iter e, P const&q)const{
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
int n=std::distance(f,e);
if (n==0) return ON_UNBOUNDED_SIDE;
int d=pd(q);
Matrix m(d+1,n);
DynVec a(n);
// FIXME: Should use the proper vector constructor (Iterator_and_last)
Vec b(d+1);
for(int j=0;j<d;++j) b[j]=c(q,j);
b[d]=1;
for(int i=0; ++f!=e; ++i){
Point const& p = *f;
for(int j=0;j<d;++j){
m(i,j)=c(p,j);
}
m(i,d)=1;
}
if (!LA::solve(a,CGAL_MOVE(m),CGAL_MOVE(b))) return false;
result_type res = ON_BOUNDED_SIDE;
for(int i=0;i<n;++i){
if (a[i]<0) return ON_UNBOUNDED_SIDE;
if (a[i]==0) res = ON_BOUNDARY;
}
return res;
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Contained_in_simplex_tag,(CartesianDKernelFunctors::Contained_in_simplex<K>),(Point_tag),(Point_dimension_tag,Compute_point_cartesian_coordinate_tag));
#if 0
namespace CartesianDKernelFunctors {
template<class R_,bool=boost::is_same<typename R_::Point,typename R_::Vector>::value> struct Orientation : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Orientation)
typedef R_ R;
typedef typename Get_type<R, Vector_tag>::type Vector;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_type<R, Orientation_tag>::type result_type;
typedef typename Get_functor<R, Orientation_of_points_tag>::type OP;
typedef typename Get_functor<R, Orientation_of_vectors_tag>::type OV;
//FIXME!!!
//when Point and Vector are distinct types, the dispatch should be made
//in a way that doesn't instantiate a conversion from Point to Vector
template<class Iter>
result_type operator()(Iter const&f, Iter const& e)const{
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
typename std::iterator_traits<Iter>::difference_type d=std::distance(f,e);
int dim=pd(*f); // BAD
if(d==dim) return OV(this->kernel())(f,e);
CGAL_assertion(d==dim+1);
return OP(this->kernel())(f,e);
}
//TODO: version that takes objects directly instead of iterators
};
template<class R_> struct Orientation<R_,false> : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Orientation)
typedef R_ R;
typedef typename Get_type<R, Vector_tag>::type Vector;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_type<R, Orientation_tag>::type result_type;
typedef typename Get_functor<R, Orientation_of_points_tag>::type OP;
typedef typename Get_functor<R, Orientation_of_vectors_tag>::type OV;
typedef typename R::LA::Square_matrix Matrix;
//FIXME!!!
//when Point and Vector are distinct types, the dispatch should be made
//in a way that doesn't instantiate a conversion from Point to Vector
template<class Iter>
typename boost::enable_if<is_iterator_to<Iter,Point>,result_type>::type
operator()(Iter const&f, Iter const& e)const{
return OP(this->kernel())(f,e);
}
template<class Iter>
typename boost::enable_if<is_iterator_to<Iter,Vector>,result_type>::type
operator()(Iter const&f, Iter const& e)const{
return OV(this->kernel())(f,e);
}
//TODO: version that takes objects directly instead of iterators
};
}
#endif
namespace CartesianDKernelFunctors {
template<class R_> struct Side_of_oriented_sphere : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Side_of_oriented_sphere)
typedef R_ R;
typedef typename Get_type<R, RT_tag>::type RT;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_type<R, Oriented_side_tag>::type result_type;
typedef typename Increment_dimension<typename R::Default_ambient_dimension>::type D1;
typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type D2;
typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
typedef typename LA::Square_matrix Matrix;
template<class Iter>
result_type operator()(Iter f, Iter const& e)const{
Point const& p0=*f++; // *--e ?
return this->operator()(f,e,p0);
}
template<class Iter>
result_type operator()(Iter f, Iter const& e, Point const& p0) const {
typedef typename Get_functor<R, Squared_distance_to_origin_tag>::type Sqdo;
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
int d=pd(p0);
Matrix m(d+1,d+1);
if(CGAL::Is_stored<Sqdo>::value) {
Sqdo sqdo(this->kernel());
for(int i=0;f!=e;++f,++i) {
Point const& p=*f;
for(int j=0;j<d;++j){
RT const& x=c(p,j);
m(i,j)=x-c(p0,j);
}
m(i,d) = sqdo(p) - sqdo(p0);
}
} else {
for(int i=0;f!=e;++f,++i) {
Point const& p=*f;
m(i,d) = 0;
for(int j=0;j<d;++j){
RT const& x=c(p,j);
m(i,j)=x-c(p0,j);
m(i,d)+=CGAL::square(m(i,j));
}
}
}
if(d%2)
return -LA::sign_of_determinant(CGAL_MOVE(m));
else
return LA::sign_of_determinant(CGAL_MOVE(m));
}
#ifdef CGAL_CXX0X
template <class...U,class=typename std::enable_if<(sizeof...(U)>=4)>::type>
result_type operator()(U&&...u) const {
return operator()({std::forward<U>(u)...});
}
template <class P>
result_type operator()(std::initializer_list<P> l) const {
return operator()(l.begin(),l.end());
}
#else
//TODO
#endif
};
}
CGAL_KD_DEFAULT_FUNCTOR(Side_of_oriented_sphere_tag,(CartesianDKernelFunctors::Side_of_oriented_sphere<K>),(Point_tag),(Point_dimension_tag,Squared_distance_to_origin_tag,Compute_point_cartesian_coordinate_tag));
namespace CartesianDKernelFunctors {
// TODO: implement it directly, it should be at least as fast as Side_of_oriented_sphere.
template<class R_> struct Side_of_bounded_sphere : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Side_of_bounded_sphere)
typedef R_ R;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_type<R, Bounded_side_tag>::type result_type;
template<class Iter>
result_type operator()(Iter f, Iter const& e) const {
Point const& p0 = *f++; // *--e ?
return operator() (f, e, p0);
}
template<class Iter>
result_type operator()(Iter const& f, Iter const& e, Point const& p0) const {
typename Get_functor<R, Side_of_oriented_sphere_tag>::type sos (this->kernel());
typename Get_functor<R, Orientation_of_points_tag>::type op (this->kernel());
// enum_cast is not very generic, but since this function isn't supposed to remain like this...
return enum_cast<Bounded_side> (sos (f, e, p0) * op (f, e));
}
#ifdef CGAL_CXX0X
template <class...U,class=typename std::enable_if<(sizeof...(U)>=4)>::type>
result_type operator()(U&&...u) const {
return operator()({std::forward<U>(u)...});
}
template <class P>
result_type operator()(std::initializer_list<P> l) const {
return operator()(l.begin(),l.end());
}
#else
//TODO
#endif
};
}
CGAL_KD_DEFAULT_FUNCTOR(Side_of_bounded_sphere_tag,(CartesianDKernelFunctors::Side_of_bounded_sphere<K>),(Point_tag),(Side_of_oriented_sphere_tag,Orientation_of_points_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Point_to_vector : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Point_to_vector)
typedef R_ R;
typedef typename Get_type<R, RT_tag>::type RT;
typedef typename Get_type<R, Vector_tag>::type Vector;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_functor<R, Construct_ttag<Vector_tag> >::type CV;
typedef typename Get_functor<R, Construct_ttag<Point_cartesian_const_iterator_tag> >::type CI;
typedef Vector result_type;
typedef Point argument_type;
result_type operator()(argument_type const&v)const{
CI ci(this->kernel());
return CV(this->kernel())(ci(v,Begin_tag(),ci(v,End_tag())));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Point_to_vector_tag,(CartesianDKernelFunctors::Point_to_vector<K>),(Point_tag,Vector_tag),(Construct_ttag<Vector_tag>, Construct_ttag<Point_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Vector_to_point : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Vector_to_point)
typedef R_ R;
typedef typename Get_type<R, RT_tag>::type RT;
typedef typename Get_type<R, Vector_tag>::type Vector;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_functor<R, Construct_ttag<Point_tag> >::type CV;
typedef typename Get_functor<R, Construct_ttag<Vector_cartesian_const_iterator_tag> >::type CI;
typedef Point result_type;
typedef Vector argument_type;
result_type operator()(argument_type const&v)const{
CI ci(this->kernel());
return CV(this->kernel())(ci(v,Begin_tag(),ci(v,End_tag())));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Vector_to_point_tag,(CartesianDKernelFunctors::Vector_to_point<K>),(Point_tag,Vector_tag),(Construct_ttag<Point_tag>, Construct_ttag<Vector_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Opposite_vector : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Opposite_vector)
typedef R_ R;
typedef typename Get_type<R, RT_tag>::type RT;
typedef typename Get_type<R, Vector_tag>::type Vector;
typedef typename Get_functor<R, Construct_ttag<Vector_tag> >::type CV;
typedef typename Get_functor<R, Construct_ttag<Vector_cartesian_const_iterator_tag> >::type CI;
typedef Vector result_type;
typedef Vector argument_type;
result_type operator()(Vector const&v)const{
CI ci(this->kernel());
return CV(this->kernel())(make_transforming_iterator(ci(v,Begin_tag()),std::negate<RT>()),make_transforming_iterator(ci(v,End_tag()),std::negate<RT>()));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Opposite_vector_tag,(CartesianDKernelFunctors::Opposite_vector<K>),(Vector_tag),(Construct_ttag<Vector_tag>, Construct_ttag<Vector_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Scaled_vector : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Scaled_vector)
typedef R_ R;
typedef typename Get_type<R, FT_tag>::type FT;
typedef typename Get_type<R, Vector_tag>::type Vector;
typedef typename Get_functor<R, Construct_ttag<Vector_tag> >::type CV;
typedef typename Get_functor<R, Construct_ttag<Vector_cartesian_const_iterator_tag> >::type CI;
typedef Vector result_type;
typedef Vector first_argument_type;
typedef FT second_argument_type;
result_type operator()(Vector const&v,FT const& s)const{
CI ci(this->kernel());
return CV(this->kernel())(make_transforming_iterator(ci(v,Begin_tag()),Scale<FT>(s)),make_transforming_iterator(ci(v,End_tag()),Scale<FT>(s)));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Scaled_vector_tag,(CartesianDKernelFunctors::Scaled_vector<K>),(Vector_tag),(Construct_ttag<Vector_tag>, Construct_ttag<Vector_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Sum_of_vectors : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Sum_of_vectors)
typedef R_ R;
typedef typename Get_type<R, RT_tag>::type RT;
typedef typename Get_type<R, Vector_tag>::type Vector;
typedef typename Get_functor<R, Construct_ttag<Vector_tag> >::type CV;
typedef typename Get_functor<R, Construct_ttag<Vector_cartesian_const_iterator_tag> >::type CI;
typedef Vector result_type;
typedef Vector first_argument_type;
typedef Vector second_argument_type;
result_type operator()(Vector const&a, Vector const&b)const{
CI ci(this->kernel());
return CV(this->kernel())(make_transforming_pair_iterator(ci(a,Begin_tag()),ci(b,Begin_tag()),std::plus<RT>()),make_transforming_pair_iterator(ci(a,End_tag()),ci(b,End_tag()),std::plus<RT>()));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Sum_of_vectors_tag,(CartesianDKernelFunctors::Sum_of_vectors<K>),(Vector_tag),(Construct_ttag<Vector_tag>, Construct_ttag<Vector_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Difference_of_vectors : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Difference_of_vectors)
typedef R_ R;
typedef typename Get_type<R, RT_tag>::type RT;
typedef typename Get_type<R, Vector_tag>::type Vector;
typedef typename Get_functor<R, Construct_ttag<Vector_tag> >::type CV;
typedef typename Get_functor<R, Construct_ttag<Vector_cartesian_const_iterator_tag> >::type CI;
typedef Vector result_type;
typedef Vector first_argument_type;
typedef Vector second_argument_type;
result_type operator()(Vector const&a, Vector const&b)const{
CI ci(this->kernel());
return CV(this->kernel())(make_transforming_pair_iterator(ci(a,Begin_tag()),ci(b,Begin_tag()),std::minus<RT>()),make_transforming_pair_iterator(ci(a,End_tag()),ci(b,End_tag()),std::minus<RT>()));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Difference_of_vectors_tag,(CartesianDKernelFunctors::Difference_of_vectors<K>),(Vector_tag),(Construct_ttag<Vector_tag>, Construct_ttag<Vector_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Translated_point : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Translated_point)
typedef R_ R;
typedef typename Get_type<R, RT_tag>::type RT;
typedef typename Get_type<R, Vector_tag>::type Vector;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_functor<R, Construct_ttag<Point_tag> >::type CP;
typedef typename Get_functor<R, Construct_ttag<Vector_cartesian_const_iterator_tag> >::type CVI;
typedef typename Get_functor<R, Construct_ttag<Point_cartesian_const_iterator_tag> >::type CPI;
typedef Point result_type;
typedef Point first_argument_type;
typedef Vector second_argument_type;
result_type operator()(Point const&a, Vector const&b)const{
CVI cvi(this->kernel());
CPI cpi(this->kernel());
return CP(this->kernel())(make_transforming_pair_iterator(cpi(a,Begin_tag()),cvi(b,Begin_tag()),std::plus<RT>()),make_transforming_pair_iterator(cpi(a,End_tag()),cvi(b,End_tag()),std::plus<RT>()));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Translated_point_tag,(CartesianDKernelFunctors::Translated_point<K>),(Point_tag, Vector_tag),(Construct_ttag<Point_tag>, Construct_ttag<Vector_cartesian_const_iterator_tag>, Construct_ttag<Point_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Difference_of_points : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Difference_of_points)
typedef R_ R;
typedef typename Get_type<R, RT_tag>::type RT;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_type<R, Vector_tag>::type Vector;
typedef typename Get_functor<R, Construct_ttag<Vector_tag> >::type CV;
typedef typename Get_functor<R, Construct_ttag<Point_cartesian_const_iterator_tag> >::type CI;
typedef Vector result_type;
typedef Point first_argument_type;
typedef Point second_argument_type;
result_type operator()(Point const&a, Point const&b)const{
CI ci(this->kernel());
return CV(this->kernel())(make_transforming_pair_iterator(ci(a,Begin_tag()),ci(b,Begin_tag()),std::minus<RT>()),make_transforming_pair_iterator(ci(a,End_tag()),ci(b,End_tag()),std::minus<RT>()));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Difference_of_points_tag,(CartesianDKernelFunctors::Difference_of_points<K>),(Point_tag, Vector_tag),(Construct_ttag<Vector_tag>, Construct_ttag<Point_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Midpoint : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Midpoint)
typedef R_ R;
typedef typename Get_type<R, FT_tag>::type FT;
typedef typename Get_type<R, RT_tag>::type RT;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_functor<R, Construct_ttag<Point_tag> >::type CP;
typedef typename Get_functor<R, Construct_ttag<Point_cartesian_const_iterator_tag> >::type CI;
typedef Point result_type;
typedef Point first_argument_type;
typedef Point second_argument_type;
// There is a division, but it will be cast to RT afterwards anyway, so maybe we could use RT.
struct Average : std::binary_function<FT,FT,RT> {
FT operator()(FT const&a, RT const&b)const{
return (a+b)/2;
}
};
result_type operator()(Point const&a, Point const&b)const{
CI ci(this->kernel());
//Divide<FT,int> half(2);
//return CP(this->kernel())(make_transforming_iterator(make_transforming_pair_iterator(ci.begin(a),ci.begin(b),std::plus<FT>()),half),make_transforming_iterator(make_transforming_pair_iterator(ci.end(a),ci.end(b),std::plus<FT>()),half));
return CP(this->kernel())(make_transforming_pair_iterator(ci(a,Begin_tag()),ci(b,Begin_tag()),Average()),make_transforming_pair_iterator(ci(a,End_tag()),ci(b,End_tag()),Average()));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Midpoint_tag,(CartesianDKernelFunctors::Midpoint<K>),(Point_tag),(Construct_ttag<Point_tag>, Construct_ttag<Point_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Squared_length : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Squared_length)
typedef R_ R;
typedef typename Get_type<R, RT_tag>::type RT;
typedef typename Get_type<R, Vector_tag>::type Vector;
typedef typename Get_functor<R, Construct_ttag<Vector_cartesian_const_iterator_tag> >::type CI;
typedef RT result_type;
typedef Vector argument_type;
result_type operator()(Vector const&a)const{
CI ci(this->kernel());
typename Algebraic_structure_traits<RT>::Square f;
// TODO: avoid this RT(0)+...
return std::accumulate(make_transforming_iterator(ci(a,Begin_tag()),f),make_transforming_iterator(ci(a,End_tag()),f),RT(0));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Squared_length_tag,(CartesianDKernelFunctors::Squared_length<K>),(Vector_tag),(Construct_ttag<Vector_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Squared_distance_to_origin : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Squared_distance_to_origin)
typedef R_ R;
typedef typename Get_type<R, RT_tag>::type RT;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_functor<R, Construct_ttag<Point_cartesian_const_iterator_tag> >::type CI;
typedef RT result_type;
typedef Point argument_type;
result_type operator()(Point const&a)const{
CI ci(this->kernel());
typename Algebraic_structure_traits<RT>::Square f;
// TODO: avoid this RT(0)+...
return std::accumulate(make_transforming_iterator(ci(a,Begin_tag()),f),make_transforming_iterator(ci(a,End_tag()),f),RT(0));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Squared_distance_to_origin_tag,(CartesianDKernelFunctors::Squared_distance_to_origin<K>),(Point_tag),(Construct_ttag<Point_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Squared_distance : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Squared_distance)
typedef R_ R;
typedef typename Get_type<R, RT_tag>::type RT;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_functor<R, Construct_ttag<Point_cartesian_const_iterator_tag> >::type CI;
typedef RT result_type;
typedef Point first_argument_type;
typedef Point second_argument_type;
struct Sq_diff : std::binary_function<RT,RT,RT> {
RT operator()(RT const&a, RT const&b)const{
return CGAL::square(a-b);
}
};
result_type operator()(Point const&a, Point const&b)const{
CI ci(this->kernel());
Sq_diff f;
// TODO: avoid this RT(0)+...
return std::accumulate(make_transforming_pair_iterator(ci(a,Begin_tag()),ci(b,Begin_tag()),f),make_transforming_pair_iterator(ci(a,End_tag()),ci(b,End_tag()),f),RT(0));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Squared_distance_tag,(CartesianDKernelFunctors::Squared_distance<K>),(Point_tag),(Construct_ttag<Point_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Compare_distance : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Compare_distance)
typedef R_ R;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_functor<R, Squared_distance_tag>::type CSD;
typedef typename Get_type<R, Comparison_result_tag>::type result_type;
typedef Point first_argument_type;
typedef Point second_argument_type;
typedef Point third_argument_type; // why am I doing this already?
typedef Point fourth_argument_type;
result_type operator()(Point const&a, Point const&b, Point const&c)const{
CSD csd(this->kernel());
return CGAL_NTS compare(csd(a,b),csd(a,c));
}
result_type operator()(Point const&a, Point const&b, Point const&c, Point const&d)const{
CSD csd(this->kernel());
return CGAL_NTS compare(csd(a,b),csd(c,d));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Compare_distance_tag,(CartesianDKernelFunctors::Compare_distance<K>),(Point_tag),(Squared_distance_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Less_point_cartesian_coordinate : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Less_point_cartesian_coordinate)
typedef R_ R;
typedef typename Get_type<R, Bool_tag>::type result_type;
typedef typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type Cc;
// TODO: This is_exact thing should be reengineered.
// the goal is to have a way to tell: don't filter this
typedef typename CGAL::Is_exact<Cc> Is_exact;
template<class V,class W,class I>
result_type operator()(V const&a, W const&b, I i)const{
Cc c(this->kernel());
return c(a,i)<c(b,i);
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Less_point_cartesian_coordinate_tag,(CartesianDKernelFunctors::Less_point_cartesian_coordinate<K>),(),(Compute_point_cartesian_coordinate_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Compare_point_cartesian_coordinate : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Compare_point_cartesian_coordinate)
typedef R_ R;
typedef typename Get_type<R, Comparison_result_tag>::type result_type;
typedef typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type Cc;
// TODO: This is_exact thing should be reengineered.
// the goal is to have a way to tell: don't filter this
typedef typename CGAL::Is_exact<Cc> Is_exact;
template<class V,class W,class I>
result_type operator()(V const&a, W const&b, I i)const{
Cc c(this->kernel());
return CGAL_NTS compare(c(a,i),c(b,i));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Compare_point_cartesian_coordinate_tag,(CartesianDKernelFunctors::Compare_point_cartesian_coordinate<K>),(),(Compute_point_cartesian_coordinate_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Compare_lexicographically : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Compare_lexicographically)
typedef R_ R;
typedef typename Get_type<R, Comparison_result_tag>::type result_type;
typedef typename Get_functor<R, Construct_ttag<Point_cartesian_const_iterator_tag> >::type CI;
// TODO: This is_exact thing should be reengineered.
// the goal is to have a way to tell: don't filter this
typedef typename CGAL::Is_exact<CI> Is_exact;
template<class V,class W>
result_type operator()(V const&a, W const&b)const{
CI c(this->kernel());
#ifdef CGAL_CXX0X
auto
#else
typename CI::result_type
#endif
a_begin=c(a,Begin_tag()),
b_begin=c(b,Begin_tag()),
a_end=c(a,End_tag());
result_type res;
// can't we do slightly better for Uncertain<*> ?
// after res=...; if(is_uncertain(res))return indeterminate<result_type>();
do res=CGAL_NTS compare(*a_begin++,*b_begin++);
while(a_begin!=a_end && res==EQUAL);
return res;
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Compare_lexicographically_tag,(CartesianDKernelFunctors::Compare_lexicographically<K>),(),(Construct_ttag<Point_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Less_lexicographically : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Less_lexicographically)
typedef R_ R;
typedef typename Get_type<R, Bool_tag>::type result_type;
typedef typename Get_functor<R, Compare_lexicographically_tag>::type CL;
typedef typename CGAL::Is_exact<CL> Is_exact;
template <class V, class W>
result_type operator() (V const&a, W const&b) const {
CL c (this->kernel());
return c(a,b) < 0;
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Less_lexicographically_tag,(CartesianDKernelFunctors::Less_lexicographically<K>),(),(Compare_lexicographically_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Less_or_equal_lexicographically : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Less_or_equal_lexicographically)
typedef R_ R;
typedef typename Get_type<R, Bool_tag>::type result_type;
typedef typename Get_functor<R, Compare_lexicographically_tag>::type CL;
typedef typename CGAL::Is_exact<CL> Is_exact;
template <class V, class W>
result_type operator() (V const&a, W const&b) const {
CL c (this->kernel());
return c(a,b) <= 0;
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Less_or_equal_lexicographically_tag,(CartesianDKernelFunctors::Less_or_equal_lexicographically<K>),(),(Compare_lexicographically_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Equal_points : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Equal_points)
typedef R_ R;
typedef typename Get_type<R, Bool_tag>::type result_type;
typedef typename Get_functor<R, Construct_ttag<Point_cartesian_const_iterator_tag> >::type CI;
// TODO: This is_exact thing should be reengineered.
// the goal is to have a way to tell: don't filter this
typedef typename CGAL::Is_exact<CI> Is_exact;
template<class V,class W>
result_type operator()(V const&a, W const&b)const{
CI c(this->kernel());
#ifdef CGAL_CXX0X
auto
#else
typename CI::result_type
#endif
a_begin=c(a,Begin_tag()),
b_begin=c(b,Begin_tag()),
a_end=c(a,End_tag());
result_type res = true;
// Is using CGAL::possibly for Uncertain really an optimization?
do res = res & (*a_begin++ == *b_begin++);
while(a_begin!=a_end && possibly(res));
return res;
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Equal_points_tag,(CartesianDKernelFunctors::Equal_points<K>),(),(Construct_ttag<Point_cartesian_const_iterator_tag>));
namespace CartesianDKernelFunctors {
template<class R_> struct Oriented_side : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Oriented_side)
typedef R_ R;
typedef typename Get_type<R, Oriented_side_tag>::type result_type;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_type<R, Hyperplane_tag>::type Hyperplane;
typedef typename Get_type<R, Sphere_tag>::type Sphere;
typedef typename Get_functor<R, Value_at_tag>::type VA;
typedef typename Get_functor<R, Hyperplane_translation_tag>::type HT;
typedef typename Get_functor<R, Squared_distance_tag>::type SD;
typedef typename Get_functor<R, Squared_radius_tag>::type SR;
typedef typename Get_functor<R, Center_of_sphere_tag>::type CS;
result_type operator()(Hyperplane const&h, Point const&p)const{
HT ht(this->kernel());
VA va(this->kernel());
return CGAL::compare(va(h,p),ht(h));
}
result_type operator()(Sphere const&s, Point const&p)const{
SD sd(this->kernel());
SR sr(this->kernel());
CS cs(this->kernel());
return CGAL::compare(sd(cs(s),p),sr(s));
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Oriented_side_tag,(CartesianDKernelFunctors::Oriented_side<K>),(Point_tag,Sphere_tag,Hyperplane_tag),(Value_at_tag,Hyperplane_translation_tag,Squared_distance_tag,Squared_radius_tag,Center_of_sphere_tag));
namespace CartesianDKernelFunctors {
template<class R_> struct Has_on_positive_side : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Has_on_positive_side)
typedef R_ R;
typedef typename Get_type<R, Bool_tag>::type result_type;
typedef typename Get_functor<R, Oriented_side_tag>::type OS;
template <class Obj, class Pt>
result_type operator()(Obj const&o, Pt const&p)const{
OS os(this->kernel());
return os(o,p) == ON_POSITIVE_SIDE;
}
};
}
CGAL_KD_DEFAULT_FUNCTOR(Has_on_positive_side_tag,(CartesianDKernelFunctors::Has_on_positive_side<K>),(),(Oriented_side_tag));
}
#include <CGAL/Kernel_d/Coaffine.h>
#endif // CGAL_KERNEL_D_FUNCTION_OBJECTS_CARTESIAN_H