cgal/Surface_mesh_parameterization/include/CGAL/Taucs_solver_traits.h

304 lines
9.7 KiB
C++

// Copyright (c) 2005 INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Laurent Saboret, Pierre Alliez, Bruno Levy
#ifndef CGAL_TAUCS_SOLVER_TRAITS
#define CGAL_TAUCS_SOLVER_TRAITS
#include <CGAL/Taucs_matrix.h>
#include <CGAL/Taucs_vector.h>
#include <CGAL/Taucs_fix.h>
#include <cassert>
#include <stdio.h>
CGAL_BEGIN_NAMESPACE
/// The class Taucs_symmetric_solver_traits
/// is a traits class for solving symmetric positive definite sparse linear systems
/// using TAUCS solvers family.
/// The default solver is the Multifrontal Supernodal Cholesky Factorization.
///
/// Concept: Model of the SparseLinearAlgebraTraits_d concept.
template<class T> // Tested with T = taucs_single or taucs_double
// May also work with T = taucs_dcomplex and taucs_scomplex
class Taucs_symmetric_solver_traits
{
// Public types
public:
typedef Taucs_symmetric_matrix<T> Matrix;
typedef Taucs_vector<T> Vector;
typedef T NT;
// Public operations
public:
/// Create a TAUCS sparse linear solver for symmetric positive definite matrices.
/// The default solver is the Multifrontal Supernodal Cholesky Factorization.
/// See taucs_linsolve() documentation for the meaning of the
/// 'options' and 'arguments' parameters.
Taucs_symmetric_solver_traits(
const char* options[] = NULL, ///< must be persistent
const void* arguments[] = NULL) ///< must be persistent
{
static const char* MULTIFRONTAL_LLT[] = {"taucs.factor.LLT=true",
"taucs.factor.mf=true",
"taucs.factor.ordering=metis",
NULL};
m_options = (options == NULL) ? MULTIFRONTAL_LLT : options;
m_arguments = arguments;
}
/// Solve the sparse linear system "A*X = B".
/// Return true on success. The solution is then (1/D) * X.
///
/// Preconditions:
/// - A.row_dimension() == B.dimension().
/// - A.column_dimension() == X.dimension().
bool linear_solver (const Matrix& A, const Vector& B, Vector& X, NT& D)
{
D = 1; // TAUCS does not support homogeneous coordinates
//#ifdef DEBUG_TRACE
// // Turn on TAUCS trace
// std::cerr.flush();
// taucs_logfile("stderr");
//#endif
//#ifdef DEBUG_TRACE
// // Debug trace
// fprintf(stderr, "\n");
// fprintf(stderr, "linear_solver:\n");
// int n = A.row_dimension();
// if (n < 20) // if small matrix, print it entirely
// {
// fprintf(stderr, "****************** A: ******************\n");
// for (int i=0; i<n; i++) {
// for (int j=0; j<n; j++)
// fprintf(stderr, "%lf\t", (double)A.get_coef(i, j));
// fprintf(stderr, "\n");
// }
// fprintf(stderr, "****************** B: ******************\n");
// for (int j=0; j<n; j++)
// fprintf(stderr, "%lf\t", (double)B[j]);
// fprintf(stderr, "\n");
// fprintf(stderr, "******************************************\n");
// }
// else // if large matrix, print only not null elements
// {
// fprintf(stderr, "****************** A*X=B ******************\n");
// for (int i=0; i<n; i++) {
// for (int j=0; j<n; j++)
// if ( ! IsZero(A.get_coef(i, j)) )
// fprintf(stderr, "A[%d][%d] = %lf\t", i, j, (double)A.get_coef(i, j));
// fprintf(stderr, "\n");
// }
// for (int j=0; j<n; j++)
// if ( ! IsZero(B[j]) )
// fprintf(stderr, "B[%d] = %lf\t", j, (double)B[j]);
// fprintf(stderr, "\n");
// fprintf(stderr, "******************************************\n");
// }
//#endif
try
{
// Factor, solve and free
int success = taucs_linsolve((taucs_ccs_matrix*) A.get_taucs_matrix(),
NULL,
1,
X.get_taucs_vector(),
(T*) B.get_taucs_vector(),
(char**) m_options,
(void**) m_arguments);
return (success == TAUCS_SUCCESS);
}
catch (...)
{
// if incorrect matrix
return false;
}
}
private:
/// Test if a floating point number is (close to) 0.0.
static inline bool IsZero(NT a)
{
return (CGAL_CLIB_STD::fabs(a) < 10.0 * (std::numeric_limits<NT>::min)());
}
// Fields
private:
const char** m_options;
const void** m_arguments;
};
/// The class Taucs_solver_traits
/// is a traits class for solving GENERAL (aka unsymmetric) sparse linear systems
/// using TAUCS out-of-core LU factorization.
///
/// Concept: Model of the SparseLinearAlgebraTraits_d concept.
template<class T> // Tested with T = taucs_single or taucs_double
// May also work with T = taucs_dcomplex and taucs_scomplex
class Taucs_solver_traits
{
// Public types
public:
typedef Taucs_matrix<T> Matrix;
typedef Taucs_vector<T> Vector;
typedef T NT;
// Public operations
public:
/// Create a TAUCS sparse linear solver for GENERAL (aka unsymmetric) matrices.
Taucs_solver_traits()
{
}
/// Solve the sparse linear system "A*X = B".
/// Return true on success. The solution is then (1/D) * X.
///
/// Preconditions:
/// - A.row_dimension() == B.dimension().
/// - A.column_dimension() == X.dimension().
bool linear_solver (const Matrix& A, const Vector& B, Vector& X, NT& D)
{
D = 1; // TAUCS does not support homogeneous coordinates
//#ifdef DEBUG_TRACE
// // Turn on TAUCS trace
// std::cerr.flush();
// taucs_logfile("stderr");
//#endif
//#ifdef DEBUG_TRACE
// // Debug trace
// fprintf(stderr, "\n");
// fprintf(stderr, "linear_solver:\n");
// int n = A.row_dimension();
// if (n < 20) // if small matrix, print it entirely
// {
// fprintf(stderr, "****************** A: ******************\n");
// for (int i=0; i<n; i++) {
// for (int j=0; j<n; j++)
// fprintf(stderr, "%lf\t", (double)A.get_coef(i, j));
// fprintf(stderr, "\n");
// }
// fprintf(stderr, "****************** B: ******************\n");
// for (int j=0; j<n; j++)
// fprintf(stderr, "%lf\t", (double)B[j]);
// fprintf(stderr, "\n");
// fprintf(stderr, "******************************************\n");
// }
// else // if large matrix, print only not null elements
// {
// fprintf(stderr, "****************** A*X=B ******************\n");
// for (int i=0; i<n; i++) {
// for (int j=0; j<n; j++)
// if ( ! IsZero(A.get_coef(i, j)) )
// fprintf(stderr, "A[%d][%d] = %lf\t", i, j, (double)A.get_coef(i, j));
// fprintf(stderr, "\n");
// }
// for (int j=0; j<n; j++)
// if ( ! IsZero(B[j]) )
// fprintf(stderr, "B[%d] = %lf\t", j, (double)B[j]);
// fprintf(stderr, "\n");
// fprintf(stderr, "******************************************\n");
// }
//#endif
try
{
int success;
// ordering
int* perm;
int* invperm;
taucs_ccs_order((taucs_ccs_matrix*) A.get_taucs_matrix(),
&perm,
&invperm,
"colamd");
if (perm == NULL) {
taucs_printf("\tOrdering Failed\n");
return false;
}
// create multifile for out-of-core swapping
char* matrixfile = tempnam(NULL, "taucs.L");
taucs_io_handle* oocL = taucs_io_create_multifile(matrixfile);
free(matrixfile); matrixfile = NULL;
if (oocL == NULL) {
taucs_printf("\tCannot Create Multifile\n");
return false;
}
// factor
int memory_mb = int(taucs_available_memory_size()/1048576.0);
success = taucs_ooc_factor_lu((taucs_ccs_matrix*) A.get_taucs_matrix(),
perm,
oocL,
memory_mb*1048576.0);
if (success != TAUCS_SUCCESS) {
taucs_printf("\tFactorization Failed\n");
return false;
}
// solve
success = taucs_ooc_solve_lu(oocL,
X.get_taucs_vector(),
(T*) B.get_taucs_vector());
if (success != TAUCS_SUCCESS) {
taucs_printf("\tSolving Failed\n");
return false;
}
// free
taucs_io_delete(oocL);
return true;
}
catch (...)
{
// if incorrect matrix
return false;
}
}
private:
/// Test if a floating point number is (close to) 0.0.
static inline bool IsZero(NT a)
{
return (CGAL_CLIB_STD::fabs(a) < 10.0 * (std::numeric_limits<NT>::min)());
}
};
CGAL_END_NAMESPACE
#endif // CGAL_TAUCS_SOLVER_TRAITS