cgal/Polyhedron/demo/Polyhedron/Plugins/Classification/Cluster_classification.cpp

908 lines
29 KiB
C++

#if defined (_MSC_VER) && !defined (_WIN64)
#pragma warning(disable:4244) // boost::number_distance::distance()
// converts 64 to 32 bits integers
#endif
#include "Cluster_classification.h"
#include "Color_ramp.h"
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Delaunay_triangulation_cell_base_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <CGAL/Timer.h>
#include <CGAL/Memory_sizer.h>
#include <QLineEdit>
#include <CGAL/Three/Viewer_interface.h>
#include <set>
#include <stack>
#include <algorithm>
#include <boost/array.hpp>
Cluster_classification::Cluster_classification(Scene_points_with_normal_item* points)
: m_points (points)
, m_input_is_las (false)
{
m_index_color = 1;
reset_indices();
backup_existing_colors_and_add_new();
bool cluster_found = false;
boost::tie (m_cluster_id, cluster_found) = m_points->point_set()->property_map<int>("shape");
if (!cluster_found)
{
std::cerr << "Error! Cluster not found!" << std::endl;
abort();
}
CGAL::Classification::create_clusters_from_indices (*(m_points->point_set()),
m_points->point_set()->point_map(),
m_cluster_id,
m_clusters);
std::cerr << m_clusters.size() << " cluster(s) found" << std::endl;
bool training_found = false;
boost::tie (m_training, training_found) = m_points->point_set()->add_property_map<int>("training", -1);
bool classif_found = false;
boost::tie (m_classif, classif_found) = m_points->point_set()->add_property_map<int>("label", -1);
training_found = !training_found; // add_property_map returns false if
classif_found = !classif_found; // property was already there
bool las_found = false;
if (!classif_found)
{
Point_set::Property_map<unsigned char> las_classif;
boost::tie (las_classif, las_found) = m_points->point_set()->property_map<unsigned char>("classification");
if (las_found)
{
m_input_is_las = true;
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
{
unsigned char uc = las_classif[*it];
m_classif[*it] = int(uc);
if (!training_found)
m_training[*it] = int(uc);
}
m_points->point_set()->remove_property_map (las_classif);
classif_found = true;
training_found = true;
}
}
if (training_found || classif_found)
{
std::vector<int> used_indices;
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
{
if (training_found)
{
int l = m_training[*it];
if (l >= 0)
{
if (std::size_t(l) >= used_indices.size())
used_indices.resize(std::size_t(l + 1), -1);
used_indices[std::size_t(l)] = 0;
}
}
if (classif_found)
{
int l = m_classif[*it];
if (l >= 0)
{
if (std::size_t(l) >= used_indices.size())
used_indices.resize(std::size_t(l + 1), -1);
used_indices[std::size_t(l)] = 0;
}
}
}
// map indices to filtered indices
int current_idx = 0;
for (std::size_t i = 0; i < used_indices.size(); ++ i)
{
if (las_found && (i < 2))
{
used_indices[i] = -1;
continue;
}
if (used_indices[i] == -1)
continue;
used_indices[i] = current_idx;
++ current_idx;
}
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
{
int c = m_cluster_id[*it];
if (training_found)
{
if (std::size_t(current_idx) != used_indices.size()) // Empty indices -> reorder indices in point set
{
if (las_found && (m_training[*it] == 0 || m_training[*it] == 1)) // Unclassified class in LAS
m_training[*it] = -1;
else if (m_training[*it] != -1)
m_training[*it] = used_indices[std::size_t(m_training[*it])];
}
if (c != -1 && m_training[*it] != -1)
m_clusters[c].training() = m_training[*it];
}
if (classif_found)
{
if (std::size_t(current_idx) != used_indices.size()) // Empty indices -> reorder indices in point set
{
if (las_found && (m_classif[*it] == 0 || m_classif[*it] == 1)) // Unclassified class in LAS
m_classif[*it] = -1;
else if (m_classif[*it] != -1)
m_classif[*it] = used_indices[std::size_t(m_classif[*it])];
}
if (c != -1 && m_classif[*it] != -1)
m_clusters[c].label() = m_classif[*it];
}
}
std::map<int, std::string> label_names;
if (las_found) // Use LAS standard
{
// label_names.insert (std::make_pair (0, std::string("never_clfied")));
// label_names.insert (std::make_pair (1, std::string("unclassified")));
label_names.insert (std::make_pair (2, std::string("ground")));
label_names.insert (std::make_pair (3, std::string("low_veget")));
label_names.insert (std::make_pair (4, std::string("med_veget")));
label_names.insert (std::make_pair (5, std::string("high_veget")));
label_names.insert (std::make_pair (6, std::string("building")));
label_names.insert (std::make_pair (7, std::string("noise")));
label_names.insert (std::make_pair (8, std::string("reserved")));
label_names.insert (std::make_pair (9, std::string("water")));
label_names.insert (std::make_pair (10, std::string("rail")));
label_names.insert (std::make_pair (11, std::string("road_surface")));
label_names.insert (std::make_pair (12, std::string("reserved_2")));
label_names.insert (std::make_pair (13, std::string("wire_guard")));
label_names.insert (std::make_pair (14, std::string("wire_conduct")));
label_names.insert (std::make_pair (15, std::string("trans_tower")));
label_names.insert (std::make_pair (16, std::string("wire_connect")));
label_names.insert (std::make_pair (17, std::string("bridge_deck")));
label_names.insert (std::make_pair (18, std::string("high_noise")));
}
else // Try to recover label names from PLY comments
{
const std::string& comments = m_points->comments();
std::istringstream stream (comments);
std::string line;
while (getline(stream, line))
{
std::stringstream iss (line);
std::string tag;
if (iss >> tag && tag == "label")
{
int idx;
std::string name;
if (iss >> idx >> name)
label_names.insert (std::make_pair (idx, name));
}
}
}
for (std::size_t i = 0; i < used_indices.size(); ++ i)
{
if (used_indices[i] == -1)
continue;
Label_handle new_label;
std::map<int, std::string>::iterator found
= label_names.find (int(i));
if (found != label_names.end())
new_label = m_labels.add(found->second.c_str());
else
{
std::ostringstream oss;
oss << "label_" << i;
new_label = m_labels.add(oss.str().c_str());
}
}
}
else
{
m_labels.add("ground");
m_labels.add("vegetation");
m_labels.add("roof");
m_labels.add("facade");
}
update_comments_of_point_set_item();
m_sowf = new Sum_of_weighted_features (m_labels, m_features);
m_ethz = nullptr;
#ifdef CGAL_LINKED_WITH_OPENCV
m_random_forest = nullptr;
#endif
// Compute neighborhood
#if 0
typedef CGAL::Triangulation_vertex_base_with_info_3<int, Kernel> Vb;
typedef CGAL::Delaunay_triangulation_cell_base_3<Kernel> Cb;
typedef CGAL::Triangulation_data_structure_3<Vb, Cb> Tds;
typedef CGAL::Delaunay_triangulation_3<Kernel, Tds> Delaunay;
Delaunay dt (boost::make_transform_iterator
(m_points->point_set()->begin(),
Point_set_with_cluster_info (m_points->point_set(),
m_cluster_id)),
boost::make_transform_iterator
(m_points->point_set()->end(),
Point_set_with_cluster_info (m_points->point_set(),
m_cluster_id)));
std::set<std::pair<int, int> > adjacencies;
for (Delaunay::Finite_edges_iterator it = dt.finite_edges_begin();
it != dt.finite_edges_end(); ++ it)
{
Delaunay::Vertex_handle v0 = it->first->vertex (it->second);
Delaunay::Vertex_handle v1 = it->first->vertex (it->third);
int a = v0->info();
int b = v1->info();
if (a == -1 || b == -1)
continue;
if (a > b)
std::swap (a, b);
adjacencies.insert (std::make_pair (a, b));
}
for (std::set<std::pair<int, int> >::iterator it = adjacencies.begin();
it != adjacencies.end(); ++ it)
{
m_clusters[std::size_t(it->first)].neighbors->push_back (std::size_t(it->second));
m_clusters[std::size_t(it->second)].neighbors->push_back (std::size_t(it->first));
}
#endif
}
Cluster_classification::~Cluster_classification()
{
if (m_sowf != nullptr)
delete m_sowf;
if (m_ethz != nullptr)
delete m_ethz;
#ifdef CGAL_LINKED_WITH_OPENCV
if (m_random_forest != nullptr)
delete m_random_forest;
#endif
#ifdef CGAL_LINKED_WITH_TENSORFLOW
if (m_neural_network != nullptr)
delete m_neural_network;
#endif
if (m_points != nullptr)
{
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
{
int c = m_cluster_id[*it];
if (c != -1)
{
m_training[*it] = m_clusters[c].training();
m_classif[*it] = m_clusters[c].label();
}
else
{
m_training[*it] = -1;
m_classif[*it] = -1;
}
}
// For LAS saving, convert classification info in the LAS standard
// if (m_input_is_las)
{
Point_set::Property_map<unsigned char> las_classif
= m_points->point_set()->add_property_map<unsigned char>("classification", 0).first;
std::vector<unsigned char> label_indices;
unsigned char custom = 19;
for (std::size_t i = 0; i < m_labels.size(); ++ i)
{
if (m_labels[i]->name() == "ground")
label_indices.push_back (2);
else if (m_labels[i]->name() == "low_veget")
label_indices.push_back (3);
else if (m_labels[i]->name() == "med_veget" || m_labels[i]->name() == "vegetation")
label_indices.push_back (4);
else if (m_labels[i]->name() == "high_veget")
label_indices.push_back (5);
else if (m_labels[i]->name() == "building" || m_labels[i]->name() == "roof")
label_indices.push_back (6);
else if (m_labels[i]->name() == "noise")
label_indices.push_back (7);
else if (m_labels[i]->name() == "reserved" || m_labels[i]->name() == "facade")
label_indices.push_back (8);
else if (m_labels[i]->name() == "water")
label_indices.push_back (9);
else if (m_labels[i]->name() == "rail")
label_indices.push_back (10);
else if (m_labels[i]->name() == "road_surface")
label_indices.push_back (11);
else if (m_labels[i]->name() == "reserved_2")
label_indices.push_back (12);
else if (m_labels[i]->name() == "wire_guard")
label_indices.push_back (13);
else if (m_labels[i]->name() == "wire_conduct")
label_indices.push_back (14);
else if (m_labels[i]->name() == "trans_tower")
label_indices.push_back (15);
else if (m_labels[i]->name() == "wire_connect")
label_indices.push_back (16);
else if (m_labels[i]->name() == "bridge_deck")
label_indices.push_back (17);
else if (m_labels[i]->name() == "high_noise")
label_indices.push_back (18);
else
label_indices.push_back (custom ++);
}
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->end(); ++ it)
{
int c = m_classif[*it];
unsigned char lc = 1; // unclassified in LAS standard
if (c != -1)
lc = label_indices[std::size_t(c)];
las_classif[*it] = lc;
int t = m_training[*it];
unsigned char lt = 1; // unclassified in LAS standard
if (t != -1)
lt = label_indices[std::size_t(t)];
m_training[*it] = int(lt);
}
m_points->point_set()->remove_property_map (m_classif);
}
reset_colors();
erase_item();
}
}
void Cluster_classification::backup_existing_colors_and_add_new()
{
if (m_points->point_set()->has_colors())
{
m_color = m_points->point_set()->add_property_map<CGAL::IO::Color>("real_color").first;
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
m_color[*it] = CGAL::IO::Color ((unsigned char)(255 * m_points->point_set()->red(*it)),
(unsigned char)(255 * m_points->point_set()->green(*it)),
(unsigned char)(255 * m_points->point_set()->blue(*it)));
m_points->point_set()->remove_colors();
}
m_points->point_set()->add_colors();
}
void Cluster_classification::reset_colors()
{
if (m_color == Point_set::Property_map<CGAL::IO::Color>())
m_points->point_set()->remove_colors();
else
{
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
m_points->point_set()->set_color(*it, m_color[*it]);
m_points->point_set()->remove_property_map(m_color);
}
}
void Cluster_classification::change_color (int index, float* vmin, float* vmax)
{
m_index_color = index;
int index_color = real_index_color();
// Colors
static Color_ramp ramp;
ramp.build_rainbow();
reset_indices();
if (index_color == -1) // item color
m_points->point_set()->remove_colors();
else
{
if (!m_points->point_set()->has_colors())
m_points->point_set()->add_colors();
if (index_color == 0) // real colors
{
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
m_points->point_set()->set_color(*it, m_color[*it]);
}
else if (index_color == 1) // classif
{
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
{
QColor color (0, 0, 0);
int cid = m_cluster_id[*it];
if (cid != -1)
{
std::size_t c = m_clusters[cid].label();
if (c != std::size_t(-1))
color = label_qcolor (m_labels[std::size_t(c)]);
}
m_points->point_set()->set_color(*it, color);
}
}
else if (index_color == 2) // training
{
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
{
QColor color (0, 0, 0);
int cid = m_cluster_id[*it];
float div = 1;
if (cid != -1)
{
int c = m_clusters[cid].training();
int c2 = m_clusters[cid].label();
if (c != -1)
color = label_qcolor (m_labels[std::size_t(c)]);
if (c != c2)
div = 2;
}
m_points->point_set()->set_color(*it, color.red() / div, color.green() / div, color.blue() / div);
}
}
else if (index_color == 3) // clusters
{
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
{
int cid = m_cluster_id[*it];
if (cid != -1)
{
srand(cid);
m_points->point_set()->set_color(*it, 64 + rand() % 192, 64 + rand() % 192, 64 + rand() % 192);
}
else
{
m_points->point_set()->set_color(*it);
}
}
}
else
{
std::size_t corrected_index = index_color - 4;
if (corrected_index < m_labels.size()) // Display label probabilities
{
if (m_label_probabilities.size() <= corrected_index ||
m_label_probabilities[corrected_index].size() != m_clusters.size())
{
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
m_points->point_set()->set_color(*it);
}
else
{
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
{
int cid = m_cluster_id[*it];
if (cid != -1)
{
float v = (std::max) (0.f, (std::min)(1.f, m_label_probabilities[corrected_index][cid]));
m_points->point_set()->set_color(*it, ramp.r(v) * 255, ramp.g(v) * 255, ramp.b(v) * 255);
}
else
m_points->point_set()->set_color(*it);
}
}
}
else
{
corrected_index -= m_labels.size();
if (corrected_index >= m_features.size())
{
std::cerr << "Error: trying to access feature " << corrected_index << " out of " << m_features.size() << std::endl;
return;
}
Feature_handle feature = m_features[corrected_index];
float min = (std::numeric_limits<float>::max)();
float max = -(std::numeric_limits<float>::max)();
if (vmin != nullptr && vmax != nullptr
&& *vmin != std::numeric_limits<float>::infinity()
&& *vmax != std::numeric_limits<float>::infinity())
{
min = *vmin;
max = *vmax;
}
else
{
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
{
int cid = m_cluster_id[*it];
if (cid != -1)
{
if (feature->value(cid) > max)
max = feature->value(cid);
if (feature->value(cid) < min)
min = feature->value(cid);
}
}
}
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->first_selected(); ++ it)
{
int cid = m_cluster_id[*it];
if (cid != -1)
{
float v = (feature->value(cid) - min) / (max - min);
if (v < 0.f) v = 0.f;
if (v > 1.f) v = 1.f;
m_points->point_set()->set_color(*it, ramp.r(v) * 255, ramp.g(v) * 255, ramp.b(v) * 255);
}
else
m_points->point_set()->set_color(*it);
}
if (vmin != nullptr && vmax != nullptr)
{
*vmin = min;
*vmax = max;
}
}
}
}
for (Point_set::const_iterator it = m_points->point_set()->first_selected();
it != m_points->point_set()->end(); ++ it)
m_points->point_set()->set_color(*it, 255, 0, 0);
}
int Cluster_classification::real_index_color() const
{
int out = m_index_color;
if (out == 0 && m_color == Point_set::Property_map<CGAL::IO::Color>())
out = -1;
return out;
}
void Cluster_classification::reset_indices ()
{
Point_set::Property_map<Point_set::Index> indices
= m_points->point_set()->property_map<Point_set::Index>("index").first;
m_points->point_set()->unselect_all();
Point_set::Index idx;
++ idx;
for (std::size_t i = 0; i < m_points->point_set()->size(); ++ i)
*(indices.begin() + i) = idx ++;
}
void Cluster_classification::compute_features (std::size_t nb_scales, float voxel_size)
{
CGAL_assertion (!(m_points->point_set()->empty()));
reset_indices();
std::cerr << "Computing pointwise features with " << nb_scales << " scale(s) and ";
if (voxel_size == -1)
std::cerr << "automatic voxel size" << std::endl;
else
std::cerr << "voxel size = " << voxel_size << std::endl;
m_features.clear();
Point_set::Vector_map normal_map;
bool normals = m_points->point_set()->has_normal_map();
if (normals)
normal_map = m_points->point_set()->normal_map();
bool colors = (m_color != Point_set::Property_map<CGAL::IO::Color>());
Point_set::Property_map<std::uint8_t> echo_map;
bool echo;
boost::tie (echo_map, echo) = m_points->point_set()->template property_map<std::uint8_t>("echo");
if (!echo)
boost::tie (echo_map, echo) = m_points->point_set()->template property_map<std::uint8_t>("number_of_returns");
Feature_set pointwise_features;
Generator generator (*(m_points->point_set()), m_points->point_set()->point_map(), nb_scales, voxel_size);
CGAL::Real_timer t;
t.start();
#ifdef CGAL_LINKED_WITH_TBB
pointwise_features.begin_parallel_additions();
#endif
generator.generate_point_based_features(pointwise_features);
if (normals)
generator.generate_normal_based_features (pointwise_features, normal_map);
if (colors)
generator.generate_color_based_features (pointwise_features, m_color);
if (echo)
generator.generate_echo_based_features (pointwise_features, echo_map);
#ifdef CGAL_LINKED_WITH_TBB
pointwise_features.end_parallel_additions();
#endif
add_remaining_point_set_properties_as_features(pointwise_features);
t.stop();
std::cerr << pointwise_features.size() << " feature(s) computed in " << t.time() << " second(s)" << std::endl;
t.reset();
std::cerr << "Computing cluster features" << std::endl;
t.start();
#ifdef CGAL_LINKED_WITH_TBB
m_features.begin_parallel_additions();
#endif
for (std::size_t i = 0; i < pointwise_features.size(); ++ i)
{
m_features.template add<Mean_of_feature> (m_clusters,
pointwise_features[i]);
}
#ifdef CGAL_LINKED_WITH_TBB
m_features.end_parallel_additions();
m_features.begin_parallel_additions();
#endif
for (std::size_t i = 0; i < pointwise_features.size(); ++ i)
{
m_features.template add<Variance_of_feature> (m_clusters,
pointwise_features[i],
m_features[i]);
}
add_cluster_features();
#ifdef CGAL_LINKED_WITH_TBB
m_features.end_parallel_additions();
#endif
t.stop();
std::cerr << m_features.size() << " feature(s) computed in " << t.time() << " second(s)" << std::endl;
delete m_sowf;
m_sowf = new Sum_of_weighted_features (m_labels, m_features);
if (m_ethz != nullptr)
{
delete m_ethz;
m_ethz = nullptr;
}
#ifdef CGAL_LINKED_WITH_OPENCV
if (m_random_forest != nullptr)
{
delete m_random_forest;
m_random_forest = nullptr;
}
#endif
std::cerr << "Features = " << m_features.size() << std::endl;
}
void Cluster_classification::select_random_region()
{
std::size_t c = rand() % m_clusters.size();
std::set<Point_set::Index> in_cluster;
for (std::size_t i = 0; i < m_clusters[c].size(); ++ i)
in_cluster.insert (m_clusters[c].index(i));
std::vector<std::size_t> selected;
std::vector<std::size_t> unselected;
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->end(); ++ it)
if (in_cluster.find (*it) != in_cluster.end())
selected.push_back (*it);
else
unselected.push_back (*it);
for (std::size_t i = 0; i < unselected.size(); ++ i)
*(m_points->point_set()->begin() + i) = unselected[i];
for (std::size_t i = 0; i < selected.size(); ++ i)
*(m_points->point_set()->begin() + (unselected.size() + i)) = selected[i];
m_points->point_set()->set_first_selected
(m_points->point_set()->begin() + unselected.size());
}
void Cluster_classification::add_remaining_point_set_properties_as_features(Feature_set& feature_set)
{
const std::vector<std::string>& prop = m_points->point_set()->base().properties();
for (std::size_t i = 0; i < prop.size(); ++ i)
{
if (prop[i] == "index" ||
prop[i] == "point" ||
prop[i] == "normal" ||
prop[i] == "echo" ||
prop[i] == "number_of_returns" ||
prop[i] == "training" ||
prop[i] == "label" ||
prop[i] == "classification" ||
prop[i] == "scan_direction_flag" ||
prop[i] == "real_color" ||
prop[i] == "shape" ||
prop[i] == "red" || prop[i] == "green" || prop[i] == "blue" ||
prop[i] == "r" || prop[i] == "g" || prop[i] == "b")
continue;
if (try_adding_simple_feature<boost::int8_t>(feature_set, prop[i]))
continue;
if (try_adding_simple_feature<std::uint8_t>(feature_set, prop[i]))
continue;
if (try_adding_simple_feature<boost::int16_t>(feature_set, prop[i]))
continue;
if (try_adding_simple_feature<std::uint16_t>(feature_set, prop[i]))
continue;
if (try_adding_simple_feature<boost::int32_t>(feature_set, prop[i]))
continue;
if (try_adding_simple_feature<std::uint32_t>(feature_set, prop[i]))
continue;
if (try_adding_simple_feature<float>(feature_set, prop[i]))
continue;
if (try_adding_simple_feature<double>(feature_set, prop[i]))
continue;
}
}
void Cluster_classification::train(int classifier, const QMultipleInputDialog& dialog)
{
if (m_features.size() == 0)
{
std::cerr << "Error: features not computed" << std::endl;
return;
}
reset_indices();
m_label_probabilities.clear();
m_label_probabilities.resize (m_labels.size());
for (std::size_t i = 0; i < m_label_probabilities.size(); ++ i)
m_label_probabilities[i].resize (m_clusters.size(), -1);
std::vector<std::size_t> nb_label (m_labels.size(), 0);
std::size_t nb_total = 0;
std::vector<int> training;
training.reserve (m_clusters.size());
for (std::size_t i = 0; i < m_clusters.size(); ++ i)
{
training.push_back (m_clusters[i].training());
if (training.back() != -1)
{
nb_label[std::size_t(training.back())] ++;
++ nb_total;
}
}
std::cerr << nb_total << " cluster(s) used for training ("
<< 100. * (nb_total / double(m_clusters.size())) << "% of the total):" << std::endl;
for (std::size_t i = 0; i < m_labels.size(); ++ i)
std::cerr << " * " << m_labels[i]->name() << ": " << nb_label[i] << " clusters(s)" << std::endl;
std::vector<int> indices (m_clusters.size(), -1);
if (classifier == CGAL_CLASSIFICATION_SOWF_NUMBER)
{
m_sowf->train<Concurrency_tag>(training, dialog.get<QSpinBox>("trials")->value());
CGAL::Classification::classify<Concurrency_tag> (m_clusters,
m_labels, *m_sowf,
indices, m_label_probabilities);
}
else if (classifier == CGAL_CLASSIFICATION_ETHZ_NUMBER)
{
if (m_ethz != nullptr)
delete m_ethz;
m_ethz = new ETHZ_random_forest (m_labels, m_features);
m_ethz->train<Concurrency_tag>(training, true,
dialog.get<QSpinBox>("num_trees")->value(),
dialog.get<QSpinBox>("max_depth")->value());
CGAL::Classification::classify<Concurrency_tag> (m_clusters,
m_labels, *m_ethz,
indices, m_label_probabilities);
}
else if (classifier == CGAL_CLASSIFICATION_OPENCV_NUMBER)
{
#ifdef CGAL_LINKED_WITH_OPENCV
if (m_random_forest != nullptr)
delete m_random_forest;
m_random_forest = new Random_forest (m_labels, m_features,
dialog.get<QSpinBox>("max_depth")->value(), 5, 15,
dialog.get<QSpinBox>("num_trees")->value());
m_random_forest->train (training);
CGAL::Classification::classify<Concurrency_tag> (m_clusters,
m_labels, *m_random_forest,
indices, m_label_probabilities);
#endif
}
for (std::size_t i = 0; i < m_clusters.size(); ++ i)
m_clusters[i].label() = indices[i];
if (m_index_color == 1 || m_index_color == 2)
change_color (m_index_color);
}
bool Cluster_classification::run (int method, int classifier,
std::size_t subdivisions,
double smoothing)
{
if (m_features.size() == 0)
{
std::cerr << "Error: features not computed" << std::endl;
return false;
}
reset_indices();
if (classifier == CGAL_CLASSIFICATION_SOWF_NUMBER)
run (method, *m_sowf, subdivisions, smoothing);
else if (classifier == CGAL_CLASSIFICATION_ETHZ_NUMBER)
{
if (m_ethz == nullptr)
{
std::cerr << "Error: ETHZ Random Forest must be trained or have a configuration loaded first" << std::endl;
return false;
}
run (method, *m_ethz, subdivisions, smoothing);
}
else if (classifier == CGAL_CLASSIFICATION_OPENCV_NUMBER)
{
#ifdef CGAL_LINKED_WITH_OPENCV
if (m_random_forest == nullptr)
{
std::cerr << "Error: OpenCV Random Forest must be trained or have a configuration loaded first" << std::endl;
return false;
}
run (method, *m_random_forest, subdivisions, smoothing);
#endif
}
return true;
}