cgal/Old_Packages/S2/include/CGAL/SimpleCartesian/CircleS2.h

346 lines
8.7 KiB
C++

// ======================================================================
//
// Copyright (c) 1999 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
// release :
// release_date : 2000, August 16
//
// source : webS2/S2.lw
// file : include/CGAL/SimpleCartesian/CircleS2.h
// package : S2 (1.7)
// maintainer : Stefan Schirra <stschirr@mpi-sb.mpg.de>
// revision : 1.6
// revision_date : 27 Jun 2000
// author(s) : Stefan Schirra
// based on code by
// Andreas Fabri and
// Herve Brönnimann
//
// coordinator : MPI, Saarbrücken
// ======================================================================
#ifndef CGAL_CIRCLES2_H
#define CGAL_CIRCLES2_H
#include <CGAL/SimpleCartesian/PointS2.h>
#include <CGAL/SimpleCartesian/basic_constructionsS2.h>
#include <CGAL/SimpleCartesian/predicates_on_pointsS2.h>
CGAL_BEGIN_NAMESPACE
template <class FT>
class CircleS2
{
public:
CircleS2() {}
CircleS2(const PointS2<FT>& center,
const FT& squared_radius,
const Orientation& orient);
CircleS2(const PointS2<FT>& p,
const PointS2<FT>& q,
const PointS2<FT>& r);
CircleS2(const PointS2<FT>& p,
const PointS2<FT>& q,
const Orientation& orient);
bool operator==(const CircleS2<FT>& s) const;
bool operator!=(const CircleS2<FT>& s) const;
PointS2<FT> center() const;
FT squared_radius() const;
CircleS2<FT> opposite() const;
CircleS2<FT> orthogonal_transform(const Aff_transformationS2<FT>& t) const;
Orientation orientation() const;
Oriented_side oriented_side(const PointS2<FT>& p) const;
Bounded_side bounded_side(const PointS2<FT>& p) const;
bool has_on_boundary(const PointS2<FT>& p) const;
bool has_on_negative_side(const PointS2<FT>& p) const;
bool has_on_positive_side(const PointS2<FT>& p) const;
bool has_on_bounded_side(const PointS2<FT>& p) const;
bool has_on_unbounded_side(const PointS2<FT>& p) const;
bool is_degenerate() const;
Bbox_2 bbox() const;
private:
void new_rep( const PointS2<FT>& c, const FT & r, const Orientation &o);
PointS2<FT> cnter;
FT squared_rad;
Orientation orient;
};
template < class FT >
CGAL_KERNEL_CTOR_INLINE
void
CircleS2<FT>::new_rep(const PointS2<FT>& c, const FT & r, const Orientation &o)
{
cnter = c;
squared_rad = r;
orient = o;
}
template < class FT >
CGAL_KERNEL_CTOR_INLINE
CircleS2<FT>::CircleS2(const PointS2<FT>& center,
const FT& squared_radius,
const Orientation& orient)
{
CGAL_kernel_precondition( ( squared_radius >= FT( 0)) &&( orient != COLLINEAR) );
new_rep(center, squared_radius, orient);
}
template < class FT >
CGAL_KERNEL_CTOR_MEDIUM_INLINE
CircleS2<FT>::CircleS2(const PointS2<FT>& p,
const PointS2<FT>& q,
const Orientation& orient)
{
CGAL_kernel_precondition( orient != COLLINEAR);
if ( p != q)
{
PointS2<FT> center = midpoint(p,q);
FT squared_radi = squared_distance(p,center);
new_rep( center, squared_radi, orient);
}
else
{ new_rep( p, FT( 0), orient); }
}
template < class FT >
CGAL_KERNEL_CTOR_MEDIUM_INLINE
CircleS2<FT>::CircleS2(const PointS2<FT>& p,
const PointS2<FT>& q,
const PointS2<FT>& r)
{
Orientation orient = CGAL::orientation(p,q,r);
CGAL_kernel_precondition( orient != COLLINEAR);
PointS2<FT> center = circumcenter(p,q,r);
FT squared_radi = squared_distance(p,center);
new_rep(center, squared_radi, orient);
}
template < class FT >
CGAL_KERNEL_INLINE
bool
CircleS2<FT>::operator==(const CircleS2<FT>& t) const
{
return (center() == t.center()) &&
(squared_radius() == t.squared_radius() &&
orientation() == t.orientation());
}
template < class FT >
inline
bool
CircleS2<FT>::operator!=(const CircleS2<FT>& t) const
{ return !(*this == t); }
template < class FT >
inline
PointS2<FT>
CircleS2<FT>::center() const
{ return cnter; }
template < class FT >
inline
FT
CircleS2<FT>::squared_radius() const
{ return squared_rad; }
template < class FT >
inline
Orientation
CircleS2<FT>::orientation() const
{ return orient; }
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
Oriented_side
CircleS2<FT>::oriented_side(const PointS2<FT>& p) const
{ return Oriented_side(bounded_side(p) * orientation()); }
template < class FT >
CGAL_KERNEL_INLINE
Bounded_side
CircleS2<FT>::bounded_side(const PointS2<FT>& p) const
{
return Bounded_side(CGAL_NTS compare(squared_radius(),
squared_distance(center(),p)));
}
template < class FT >
inline
bool
CircleS2<FT>::has_on_boundary(const PointS2<FT>& p) const
{ return squared_distance(center(),p) == squared_radius(); }
template < class FT >
CGAL_KERNEL_INLINE
bool
CircleS2<FT>::has_on_negative_side(const PointS2<FT>& p) const
{
if (orientation() == COUNTERCLOCKWISE) {
return has_on_unbounded_side(p);
}
return has_on_bounded_side(p);
}
template < class FT >
CGAL_KERNEL_INLINE
bool
CircleS2<FT>::has_on_positive_side(const PointS2<FT>& p) const
{
if (orientation() == COUNTERCLOCKWISE) {
return has_on_bounded_side(p);
}
return has_on_unbounded_side(p);
}
template < class FT >
inline
bool
CircleS2<FT>::has_on_bounded_side(const PointS2<FT>& p) const
{ return squared_distance(center(),p) < squared_radius(); }
template < class FT >
inline
bool
CircleS2<FT>::has_on_unbounded_side(const PointS2<FT>& p) const
{ return squared_distance(center(),p) > squared_radius(); }
template < class FT >
inline
bool
CircleS2<FT>::is_degenerate() const
{ return CGAL_NTS is_zero(squared_radius()); }
template < class FT >
inline
CircleS2<FT>
CircleS2<FT>::opposite() const
{
return CircleS2<FT>(center(),
squared_radius(),
CGAL::opposite(orientation()) );
}
template < class FT >
CGAL_KERNEL_INLINE
Bbox_2
CircleS2<FT>::bbox() const
{
double cx = CGAL::to_double(center().x());
double cy = CGAL::to_double(center().y());
double radius = sqrt(CGAL::to_double(squared_radius()));
return Bbox_2(cx - radius, cy - radius, cx + radius, cy + radius);
}
template < class FT >
CGAL_KERNEL_INLINE
CircleS2<FT>
CircleS2<FT>::orthogonal_transform(const Aff_transformationS2<FT>& t) const
{
VectorS2<FT> vec( FT(1), FT(0) ); // unit vector
vec = vec.transform(t); // transformed
FT sq_scale = FT( vec*vec ); // squared scaling factor
return CircleS2<FT>(t.transform(center()),
sq_scale * squared_radius(),
t.is_even() ? orientation()
: CGAL::opposite(orientation()));
}
#ifndef CGAL_NO_OSTREAM_INSERT_CIRCLES2
template < class FT >
CGAL_KERNEL_INLINE
std::ostream& operator<<(std::ostream &os, const CircleS2<FT> &c)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
os << c.center() << ' ' << c.squared_radius() << ' '
<< (int)c.orientation();
break;
case IO::BINARY :
os << c.center();
write(os, c.squared_radius());
write(os, (int)c.orientation());
break;
default:
os << "CircleS2(" << c.center() << ", " << c.squared_radius() ;
switch (c.orientation()) {
case CLOCKWISE:
os << ", clockwise)";
break;
case COUNTERCLOCKWISE:
os << ", counterclockwise)";
break;
default:
os << ", collinear)";
break;
}
break;
}
return os;
}
#endif // CGAL_NO_OSTREAM_INSERT_CIRCLES2
#ifndef CGAL_NO_ISTREAM_EXTRACT_CIRCLES2
template < class FT >
CGAL_KERNEL_INLINE
std::istream& operator>>(std::istream& is, CircleS2<FT> &c)
{
PointS2<FT> center;
FT squared_radi;
int o;
switch(is.iword(IO::mode)) {
case IO::ASCII :
is >> center >> squared_radi >> o;
break;
case IO::BINARY :
is >> center;
read(is, squared_radi);
is >> o;
break;
default:
cerr << "" << std::endl;
cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
c = CircleS2<FT>(center, squared_radi, (Orientation)o);
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_CIRCLES2
CGAL_END_NAMESPACE
#endif // CGAL_CIRCLES2_H