cgal/Old_Packages/Stl_port/stlport/stl_function.h

797 lines
25 KiB
C++

/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Copyright (c) 1996-1998
* Silicon Graphics Computer Systems, Inc.
*
* Copyright (c) 1997
* Moscow Center for SPARC Technology
*
* Copyright (c) 1999
* Boris Fomitchev
*
* This material is provided "as is", with absolutely no warranty expressed
* or implied. Any use is at your own risk.
*
* Permission to use or copy this software for any purpose is hereby granted
* without fee, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_FUNCTION_H
#define __SGI_STL_INTERNAL_FUNCTION_H
#include <cgal_functional_base.h>
__STL_BEGIN_NAMESPACE
template <class _Arg, class _Result>
struct unary_function {
typedef _Arg argument_type;
typedef _Result result_type;
typedef CGAL::Arity_tag< 1 > Arity;
};
template <class _Arg1, class _Arg2, class _Result>
struct binary_function {
typedef _Arg1 first_argument_type;
typedef _Arg2 second_argument_type;
typedef _Result result_type;
typedef CGAL::Arity_tag< 2 > Arity;
};
template <class _Tp>
struct plus : public binary_function<_Tp,_Tp,_Tp> {
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; }
};
template <class _Tp>
struct minus : public binary_function<_Tp,_Tp,_Tp> {
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; }
};
template <class _Tp>
struct multiplies : public binary_function<_Tp,_Tp,_Tp> {
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; }
};
template <class _Tp>
struct divides : public binary_function<_Tp,_Tp,_Tp> {
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; }
};
// identity_element (not part of the C++ standard).
template <class _Tp> inline _Tp identity_element(plus<_Tp>) {
return _Tp(0);
}
template <class _Tp> inline _Tp identity_element(multiplies<_Tp>) {
return _Tp(1);
}
template <class _Tp>
struct modulus : public binary_function<_Tp,_Tp,_Tp>
{
_Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; }
};
template <class _Tp>
struct negate : public unary_function<_Tp,_Tp>
{
_Tp operator()(const _Tp& __x) const { return -__x; }
};
template <class _Tp>
struct equal_to : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; }
};
template <class _Tp>
struct not_equal_to : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; }
};
template <class _Tp>
struct greater : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; }
};
template <class _Tp>
struct less : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; }
};
template <class _Tp>
struct greater_equal : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; }
};
template <class _Tp>
struct less_equal : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; }
};
template <class _Tp>
struct logical_and : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; }
};
template <class _Tp>
struct logical_or : public binary_function<_Tp,_Tp,bool>
{
bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; }
};
template <class _Tp>
struct logical_not : public unary_function<_Tp,bool>
{
bool operator()(const _Tp& __x) const { return !__x; }
};
# if defined (__STL_BASE_TYPEDEF_BUG)
// this workaround is needed for SunPro 4.0.1
// suggested by "Martin Abernethy" <gma@paston.co.uk>:
// We have to introduce the XXary_predicate_aux structures in order to
// access the argument and return types of predicate functions supplied
// as type parameters. SUN C++ 4.0.1 compiler gives errors for template type parameters
// of the form 'name1::name2', where name1 is itself a type parameter.
template <class _Pair>
struct __pair_aux : private _Pair
{
typedef typename _Pair::first_type first_type;
typedef typename _Pair::second_type second_type;
};
template <class _Operation>
struct __unary_fun_aux : private _Operation
{
typedef typename _Operation::argument_type argument_type;
typedef typename _Operation::result_type result_type;
};
template <class _Operation>
struct __binary_fun_aux : private _Operation
{
typedef typename _Operation::first_argument_type first_argument_type;
typedef typename _Operation::second_argument_type second_argument_type;
typedef typename _Operation::result_type result_type;
};
# define __UNARY_ARG(__Operation,__type) __unary_fun_aux<__Operation>::__type
# define __BINARY_ARG(__Operation,__type) __binary_fun_aux<__Operation>::__type
# define __PAIR_ARG(__Pair,__type) __pair_aux<__Pair>::__type
# else
# define __UNARY_ARG(__Operation,__type) __Operation::__type
# define __BINARY_ARG(__Operation,__type) __Operation::__type
# define __PAIR_ARG(__Pair,__type) __Pair::__type
# endif
template <class _Predicate>
class unary_negate :
public unary_function<typename __UNARY_ARG(_Predicate,argument_type), bool> {
protected:
_Predicate _M_pred;
public:
explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {}
bool operator()(const typename _Predicate::argument_type& __x) const {
return !_M_pred(__x);
}
};
template <class _Predicate>
inline unary_negate<_Predicate>
not1(const _Predicate& __pred)
{
return unary_negate<_Predicate>(__pred);
}
template <class _Predicate>
class binary_negate
: public binary_function<typename __BINARY_ARG(_Predicate,first_argument_type),
typename __BINARY_ARG(_Predicate,second_argument_type),
bool> {
protected:
_Predicate _M_pred;
public:
explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {}
bool operator()(const typename _Predicate::first_argument_type& __x,
const typename _Predicate::second_argument_type& __y) const
{
return !_M_pred(__x, __y);
}
};
template <class _Predicate>
inline binary_negate<_Predicate>
not2(const _Predicate& __pred)
{
return binary_negate<_Predicate>(__pred);
}
template <class _Operation>
class binder1st :
public unary_function<typename __BINARY_ARG(_Operation,second_argument_type),
typename __BINARY_ARG(_Operation,result_type) > {
protected:
_Operation _M_op;
typename _Operation::first_argument_type _M_value;
public:
binder1st(const _Operation& __x,
const typename _Operation::first_argument_type& __y)
: _M_op(__x), _M_value(__y) {}
typename _Operation::result_type
operator()(const typename _Operation::second_argument_type& __x) const {
return _M_op(_M_value, __x);
}
};
template <class _Operation, class _Tp>
inline binder1st<_Operation>
bind1st(const _Operation& __fn, const _Tp& __x)
{
typedef typename _Operation::first_argument_type _Arg1_type;
return binder1st<_Operation>(__fn, _Arg1_type(__x));
}
template <class _Operation>
class binder2nd
: public unary_function<typename __BINARY_ARG(_Operation,first_argument_type),
typename __BINARY_ARG(_Operation,result_type)> {
protected:
_Operation _M_op;
typename _Operation::second_argument_type value;
public:
binder2nd(const _Operation& __x,
const typename _Operation::second_argument_type& __y)
: _M_op(__x), value(__y) {}
typename _Operation::result_type
operator()(const typename _Operation::first_argument_type& __x) const {
return _M_op(__x, value);
}
};
template <class _Operation, class _Tp>
inline binder2nd<_Operation>
bind2nd(const _Operation& __fn, const _Tp& __x)
{
typedef typename _Operation::second_argument_type _Arg2_type;
return binder2nd<_Operation>(__fn, _Arg2_type(__x));
}
// unary_compose and binary_compose (extensions, not part of the standard).
template <class _Operation1, class _Operation2>
class unary_compose :
public unary_function<typename __UNARY_ARG(_Operation2,argument_type),
typename __UNARY_ARG(_Operation1,result_type)> {
protected:
_Operation1 _M_fn1;
_Operation2 _M_fn2;
public:
unary_compose(const _Operation1& __x, const _Operation2& __y)
: _M_fn1(__x), _M_fn2(__y) {}
typename _Operation1::result_type
operator()(const typename _Operation2::argument_type& __x) const {
return _M_fn1(_M_fn2(__x));
}
};
template <class _Operation1, class _Operation2>
inline unary_compose<_Operation1,_Operation2>
compose1(const _Operation1& __fn1, const _Operation2& __fn2)
{
return unary_compose<_Operation1,_Operation2>(__fn1, __fn2);
}
template <class _Operation1, class _Operation2, class _Operation3>
class binary_compose :
public unary_function<typename __UNARY_ARG(_Operation2,argument_type),
typename __BINARY_ARG(_Operation1,result_type)> {
protected:
_Operation1 _M_fn1;
_Operation2 _M_fn2;
_Operation3 _M_fn3;
public:
binary_compose(const _Operation1& __x, const _Operation2& __y,
const _Operation3& __z)
: _M_fn1(__x), _M_fn2(__y), _M_fn3(__z) { }
typename _Operation1::result_type
operator()(const typename _Operation2::argument_type& __x) const {
return _M_fn1(_M_fn2(__x), _M_fn3(__x));
}
};
template <class _Operation1, class _Operation2, class _Operation3>
inline binary_compose<_Operation1, _Operation2, _Operation3>
compose2(const _Operation1& __fn1, const _Operation2& __fn2,
const _Operation3& __fn3)
{
return binary_compose<_Operation1,_Operation2,_Operation3>
(__fn1, __fn2, __fn3);
}
template <class _Arg, class _Result>
class pointer_to_unary_function : public unary_function<_Arg, _Result> {
protected:
_Result (*_M_ptr)(_Arg);
public:
pointer_to_unary_function() {}
explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {}
_Result operator()(_Arg __x) const { return _M_ptr(__x); }
};
template <class _Arg, class _Result>
inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg))
{
return pointer_to_unary_function<_Arg, _Result>(__x);
}
template <class _Arg1, class _Arg2, class _Result>
class pointer_to_binary_function :
public binary_function<_Arg1,_Arg2,_Result> {
protected:
_Result (*_M_ptr)(_Arg1, _Arg2);
public:
pointer_to_binary_function() {}
explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
: _M_ptr(__x) {}
_Result operator()(_Arg1 __x, _Arg2 __y) const {
return _M_ptr(__x, __y);
}
};
template <class _Arg1, class _Arg2, class _Result>
inline pointer_to_binary_function<_Arg1,_Arg2,_Result>
ptr_fun(_Result (*__x)(_Arg1, _Arg2)) {
return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x);
}
// identity is an extension: it is not part of the standard.
template <class _Tp>
struct _Identity : public unary_function<_Tp,_Tp> {
const _Tp& operator()(const _Tp& __x) const { return __x; }
};
template <class _Tp> struct identity : public _Identity<_Tp> {};
# ifdef __STL_USE_ABBREVS
# define _Select1st _S1st
# define _Select2nd _S2nd
# endif
// select1st and select2nd are extensions: they are not part of the standard.
template <class _Pair>
struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> {
const typename _Pair::first_type& operator()(const _Pair& __x) const {
return __x.first;
}
};
template <class _Pair>
struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type>
{
const typename _Pair::second_type& operator()(const _Pair& __x) const {
return __x.second;
}
};
#ifdef __STL_MULTI_CONST_TEMPLATE_ARG_BUG
// fbp : sort of select1st just for maps
template <class _Pair, class _U>
// JDJ (CW Pro1 doesn't like const when first_type is also const)
struct __Select1st_hint : public unary_function<_Pair, _U> {
const _U& operator () (const _Pair& __x) const { return __x.first; }
};
# endif
template <class _Pair> struct select1st : public _Select1st<_Pair> {};
template <class _Pair> struct select2nd : public _Select2nd<_Pair> {};
// project1st and project2nd are extensions: they are not part of the standard
template <class _Arg1, class _Arg2>
struct _Project1st : public binary_function<_Arg1, _Arg2, _Arg1> {
_Arg1 operator()(const _Arg1& __x, const _Arg2&) const { return __x; }
};
template <class _Arg1, class _Arg2>
struct _Project2nd : public binary_function<_Arg1, _Arg2, _Arg2> {
_Arg2 operator()(const _Arg1&, const _Arg2& __y) const { return __y; }
};
template <class _Arg1, class _Arg2>
struct project1st : public _Project1st<_Arg1, _Arg2> {};
template <class _Arg1, class _Arg2>
struct project2nd : public _Project2nd<_Arg1, _Arg2> {};
// constant_void_fun, constant_unary_fun, and constant_binary_fun are
// extensions: they are not part of the standard. (The same, of course,
// is true of the helper functions constant0, constant1, and constant2.)
template <class _Result>
struct _Constant_void_fun {
typedef _Result result_type;
result_type _M_val;
_Constant_void_fun(const result_type& __v) : _M_val(__v) {}
const result_type& operator()() const { return _M_val; }
};
template <class _Result, class _Argument>
struct _Constant_unary_fun {
typedef _Argument argument_type;
typedef _Result result_type;
result_type _M_val;
_Constant_unary_fun(const result_type& __v) : _M_val(__v) {}
const result_type& operator()(const _Argument&) const { return _M_val; }
};
template <class _Result, class _Arg1, class _Arg2>
struct _Constant_binary_fun {
typedef _Arg1 first_argument_type;
typedef _Arg2 second_argument_type;
typedef _Result result_type;
_Result _M_val;
_Constant_binary_fun(const _Result& __v) : _M_val(__v) {}
const result_type& operator()(const _Arg1&, const _Arg2&) const {
return _M_val;
}
};
template <class _Result>
struct constant_void_fun : public _Constant_void_fun<_Result> {
constant_void_fun(const _Result& __v) : _Constant_void_fun<_Result>(__v) {}
};
template <class _Result, __DFL_TMPL_PARAM( _Argument , _Result) >
struct constant_unary_fun : public _Constant_unary_fun<_Result, _Argument>
{
constant_unary_fun(const _Result& __v)
: _Constant_unary_fun<_Result, _Argument>(__v) {}
};
template <class _Result, __DFL_TMPL_PARAM( _Arg1 , _Result), __DFL_TMPL_PARAM( _Arg2 , _Arg1) >
struct constant_binary_fun
: public _Constant_binary_fun<_Result, _Arg1, _Arg2>
{
constant_binary_fun(const _Result& __v)
: _Constant_binary_fun<_Result, _Arg1, _Arg2>(__v) {}
};
template <class _Result>
inline constant_void_fun<_Result> constant0(const _Result& __val)
{
return constant_void_fun<_Result>(__val);
}
template <class _Result>
inline constant_unary_fun<_Result,_Result> constant1(const _Result& __val)
{
return constant_unary_fun<_Result,_Result>(__val);
}
template <class _Result>
inline constant_binary_fun<_Result,_Result,_Result>
constant2(const _Result& __val)
{
return constant_binary_fun<_Result,_Result,_Result>(__val);
}
// subtractive_rng is an extension: it is not part of the standard.
// Note: this code assumes that int is 32 bits.
class subtractive_rng : public unary_function<__STL_UINT32_T, __STL_UINT32_T> {
private:
__STL_UINT32_T _M_table[55];
__STL_UINT32_T _M_index1;
__STL_UINT32_T _M_index2;
public:
__STL_UINT32_T operator()(__STL_UINT32_T __limit) {
_M_index1 = (_M_index1 + 1) % 55;
_M_index2 = (_M_index2 + 1) % 55;
_M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2];
return _M_table[_M_index1] % __limit;
}
void _M_initialize(__STL_UINT32_T __seed)
{
__STL_UINT32_T __k = 1;
_M_table[54] = __seed;
__STL_UINT32_T __i;
for (__i = 0; __i < 54; __i++) {
__STL_UINT32_T __ii = (21 * (__i + 1) % 55) - 1;
_M_table[__ii] = __k;
__k = __seed - __k;
__seed = _M_table[__ii];
}
for (int __loop = 0; __loop < 4; __loop++) {
for (__i = 0; __i < 55; __i++)
_M_table[__i] = _M_table[__i] - _M_table[(1 + __i + 30) % 55];
}
_M_index1 = 0;
_M_index2 = 31;
}
subtractive_rng(unsigned int __seed) { _M_initialize(__seed); }
subtractive_rng() { _M_initialize(161803398ul); }
};
// Adaptor function objects: pointers to member functions.
// There are a total of 16 = 2^4 function objects in this family.
// (1) Member functions taking no arguments vs member functions taking
// one argument.
// (2) Call through pointer vs call through reference.
// (3) Member function with void return type vs member function with
// non-void return type.
// (4) Const vs non-const member function.
// Note that choice (3) is nothing more than a workaround: according
// to the draft, compilers should handle void and non-void the same way.
// This feature is not yet widely implemented, though. You can only use
// member functions returning void if your compiler supports partial
// specialization.
// All of this complexity is in the function objects themselves. You can
// ignore it by using the helper function mem_fun and mem_fun_ref,
// which create whichever type of adaptor is appropriate.
// (mem_fun1 and mem_fun1_ref are no longer part of the C++ standard,
// but they are provided for backward compatibility.)
template <class _Ret, class _Tp>
class mem_fun_t : public unary_function<_Tp*,_Ret> {
typedef _Ret (_Tp::*_fun_type)(void);
public:
explicit mem_fun_t(_fun_type __pf) : _M_f(__pf) {}
_Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); }
private:
_fun_type _M_f;
};
template <class _Ret, class _Tp>
class const_mem_fun_t : public unary_function<const _Tp*,_Ret> {
typedef _Ret (_Tp::*_fun_type)(void) const;
public:
explicit const_mem_fun_t(_fun_type __pf) : _M_f(__pf) {}
_Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); }
private:
_fun_type _M_f;
};
template <class _Ret, class _Tp>
class mem_fun_ref_t : public unary_function<_Tp,_Ret> {
typedef _Ret (_Tp::*_fun_type)(void);
public:
explicit mem_fun_ref_t(_fun_type __pf) : _M_f(__pf) {}
_Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); }
private:
_fun_type _M_f;
};
template <class _Ret, class _Tp>
class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> {
typedef _Ret (_Tp::*_fun_type)(void) const;
public:
explicit const_mem_fun_ref_t(_fun_type __pf) : _M_f(__pf) {}
_Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); }
private:
_fun_type _M_f;
};
template <class _Ret, class _Tp, class _Arg>
class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> {
typedef _Ret (_Tp::*_fun_type)(_Arg);
public:
explicit mem_fun1_t(_fun_type __pf) : _M_f(__pf) {}
_Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); }
private:
_fun_type _M_f;
};
template <class _Ret, class _Tp, class _Arg>
class const_mem_fun1_t : public binary_function<const _Tp*,_Arg,_Ret> {
typedef _Ret (_Tp::*_fun_type)(_Arg) const;
public:
explicit const_mem_fun1_t(_fun_type __pf) : _M_f(__pf) {}
_Ret operator()(const _Tp* __p, _Arg __x) const
{ return (__p->*_M_f)(__x); }
private:
_fun_type _M_f;
};
template <class _Ret, class _Tp, class _Arg>
class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
typedef _Ret (_Tp::*_fun_type)(_Arg);
public:
explicit mem_fun1_ref_t(_fun_type __pf) : _M_f(__pf) {}
_Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
private:
_fun_type _M_f;
};
template <class _Ret, class _Tp, class _Arg>
class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
typedef _Ret (_Tp::*_fun_type)(_Arg) const;
public:
explicit const_mem_fun1_ref_t(_fun_type __pf) : _M_f(__pf) {}
_Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
private:
_fun_type _M_f;
};
# if defined( __STL_CLASS_PARTIAL_SPECIALIZATION) && \
! defined(CGAL_LIMITED_ITERATOR_TRAITS_SUPPORT)
template <class _Tp>
class mem_fun_t<void, _Tp> : public unary_function<_Tp*,void> {
typedef void (_Tp::*_fun_type)(void);
public:
explicit mem_fun_t __STL_PSPEC2(void,_Tp) (_fun_type __pf) : _M_f(__pf) {}
void operator()(_Tp* __p) const { (__p->*_M_f)(); }
private:
_fun_type _M_f;
};
template <class _Tp>
class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*,void> {
typedef void (_Tp::*_fun_type)(void) const;
public:
explicit const_mem_fun_t __STL_PSPEC2(void,_Tp) (_fun_type __pf) : _M_f(__pf) {}
void operator()(const _Tp* __p) const { (__p->*_M_f)(); }
private:
_fun_type _M_f;
};
template <class _Tp>
class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
typedef void (_Tp::*_fun_type)(void);
public:
explicit mem_fun_ref_t __STL_PSPEC2(void,_Tp) (_fun_type __pf) : _M_f(__pf) {}
void operator()(_Tp& __r) const { (__r.*_M_f)(); }
private:
_fun_type _M_f;
};
template <class _Tp>
class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
typedef void (_Tp::*_fun_type)(void) const;
public:
explicit const_mem_fun_ref_t __STL_PSPEC2(void,_Tp) (_fun_type __pf) : _M_f(__pf) {}
void operator()(const _Tp& __r) const { (__r.*_M_f)(); }
private:
_fun_type _M_f;
};
template <class _Tp, class _Arg>
class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*,_Arg,void> {
typedef void (_Tp::*_fun_type)(_Arg);
public:
explicit mem_fun1_t __STL_PSPEC3(void,_Tp,_Arg) (_fun_type __pf) : _M_f(__pf) {}
void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
private:
_fun_type _M_f;
};
template <class _Tp, class _Arg>
class const_mem_fun1_t<void, _Tp, _Arg>
: public binary_function<const _Tp*,_Arg,void> {
typedef void (_Tp::*_fun_type)(_Arg) const;
public:
explicit const_mem_fun1_t __STL_PSPEC3(void,_Tp,_Arg) (_fun_type __pf) : _M_f(__pf) {}
void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
private:
_fun_type _M_f;
};
template <class _Tp, class _Arg>
class mem_fun1_ref_t<void, _Tp, _Arg>
: public binary_function<_Tp,_Arg,void> {
typedef void (_Tp::*_fun_type)(_Arg);
public:
explicit mem_fun1_ref_t __STL_PSPEC3(void,_Tp,_Arg) (_fun_type __pf) : _M_f(__pf) {}
void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
private:
_fun_type _M_f;
};
template <class _Tp, class _Arg>
class const_mem_fun1_ref_t<void, _Tp, _Arg>
: public binary_function<_Tp,_Arg,void> {
typedef void (_Tp::*_fun_type)(_Arg) const;
public:
explicit const_mem_fun1_ref_t __STL_PSPEC3(void,_Tp,_Arg) (_fun_type __pf) : _M_f(__pf) {}
void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
private:
_fun_type _M_f;
};
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
# if !defined (__STL_MEMBER_POINTER_PARAM_BUG)
// Mem_fun adaptor helper functions. There are only two:
// mem_fun and mem_fun_ref. (mem_fun1 and mem_fun1_ref
// are provided for backward compatibility, but they are no longer
// part of the C++ standard.)
template <class _Ret, class _Tp>
inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)())
{ return mem_fun_t<_Ret,_Tp>(__f); }
template <class _Ret, class _Tp>
inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const)
{ return const_mem_fun_t<_Ret,_Tp>(__f); }
template <class _Ret, class _Tp>
inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)())
{ return mem_fun_ref_t<_Ret,_Tp>(__f); }
template <class _Ret, class _Tp>
inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const)
{ return const_mem_fun_ref_t<_Ret,_Tp>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun1_ref(_Ret (_Tp::*__f)(_Arg))
{ return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
mem_fun1_ref(_Ret (_Tp::*__f)(_Arg) const)
{ return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
# endif /* __STL_MEMBER_POINTER_PARAM_BUG */
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_FUNCTION_H */
// Local Variables:
// mode:C++
// End: