cgal/Packages/Apollonius_graph_2/include/CGAL/functions_on_signs.h

148 lines
3.8 KiB
C++

// ======================================================================
//
// Copyright (c) 2003 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/functions_on_signs.h
// package : Apollonius_graph_2
// source : $RCSfile$
// revision : $Revision$
// revision_date : $Date$
// author(s) : Menelaos Karavelas <mkaravel@cse.nd.edu>
//
// coordinator :
//
// ======================================================================
#ifndef CGAL_FUNCTIONS_ON_SIGNS_H
#define CGAL_FUNCTIONS_ON_SIGNS_H
#include <CGAL/enum.h>
CGAL_BEGIN_NAMESPACE
#if 0
inline
Sign
operator*(const Sign &s1, const Sign &s2)
{
if ( s1 == ZERO || s2 == ZERO ) return ZERO;
if ( s1 == s2 ) return POSITIVE;
return NEGATIVE;
}
#endif
template < class RT >
Sign
sign_a_plus_b_x_sqrt_c(const RT &a, const RT &b, const RT &c)
{
// computes the sign of quantity: a + b * sqrt(c)
CGAL_assertion( !(CGAL_NTS is_negative(c)) );
Sign sa = CGAL_NTS sign(a);
if ( CGAL_NTS sign(c) == ZERO ) return sa;
Sign sb = CGAL_NTS sign(b);
if ( sa == sb ) return sa;
if ( sa == ZERO ) return sb;
return Sign( sa * CGAL_NTS compare( CGAL_NTS square(a),
c * CGAL_NTS square(b) )
);
}
template < class RT >
Sign
sign_a_x_sqrt_c_plus_b_x_sqrt_d(const RT &a, const RT &b,
const RT &c, const RT &d)
{
// computes the sign of quantity: a * sqrt(c) + b * sqrt(d)
CGAL_assertion( !(CGAL_NTS is_negative(c)) );
CGAL_assertion( !(CGAL_NTS is_negative(d)) );
Sign sb = CGAL_NTS sign(b);
if ( CGAL_NTS sign(d) == ZERO ) return CGAL_NTS sign(a * c);
if ( CGAL_NTS sign(c) == ZERO ) return sb;
Sign sa = CGAL_NTS sign(a);
if ( sa == sb ) return sa;
if ( sa == ZERO ) return sb;
return Sign( sa * CGAL_NTS compare( CGAL_NTS square(a) * c,
CGAL_NTS square(b) * d )
);
}
template < class RT >
Sign
sign_a_plus_b_x_sqrt_e_plus_c_x_sqrt_f(const RT &a, const RT &b,
const RT &c, const RT &e,
const RT &f)
{
// computes the sign of quantity: a + b * sqrt(e) + c * sqrt(f)
CGAL_assertion( !(CGAL_NTS is_negative(e)) );
CGAL_assertion( !(CGAL_NTS is_negative(f)) );
Sign s_a_plus_b_x_sqrt_e = sign_a_plus_b_x_sqrt_c(a, b, e);
if ( CGAL_NTS sign(f) == ZERO ) return s_a_plus_b_x_sqrt_e;
Sign sc = CGAL_NTS sign(c);
if ( s_a_plus_b_x_sqrt_e == sc ) return sc;
if ( s_a_plus_b_x_sqrt_e == ZERO ) return sc;
return s_a_plus_b_x_sqrt_e *
sign_a_plus_b_x_sqrt_c(CGAL_NTS square(a) + CGAL_NTS square(b) * e
- CGAL_NTS square(c) * f,
RT(2) * a * b, e);
}
template < class RT >
Sign
sign_a_plus_b_x_sqrt_e_plus_c_x_sqrt_f_plus_d_sqrt_e_x_f(const RT &a,
const RT &b,
const RT &c,
const RT &d,
const RT &e,
const RT &f)
{
// computes the sign of quantity:
// a + b * sqrt(e) + c * sqrt(f) + d * sqrt(e * f)
CGAL_assertion( !(CGAL_NTS is_negative(e)) );
CGAL_assertion( !(CGAL_NTS is_negative(f)) );
Sign s_a_plus_b_sqrt_e = sign_a_plus_b_x_sqrt_c(a, b, e);
Sign s_c_plus_d_sqrt_e = sign_a_plus_b_x_sqrt_c(c, d, e);
if ( s_a_plus_b_sqrt_e == s_c_plus_d_sqrt_e )
return s_a_plus_b_sqrt_e;
if ( s_a_plus_b_sqrt_e == ZERO )
return s_a_plus_b_sqrt_e;
return s_a_plus_b_sqrt_e *
sign_a_plus_b_x_sqrt_c(CGAL_NTS square(a) + CGAL_NTS square(b) * e
- CGAL_NTS square(c) * f
- CGAL_NTS square(d) * e * f,
RT(2) * (a * b - c * d * f),
e);
}
CGAL_END_NAMESPACE
#include <CGAL/more_functions_on_signs.h>
#endif // CGAL_FUNCTIONS_ON_SIGNS_H