mirror of https://github.com/CGAL/cgal
361 lines
10 KiB
C++
361 lines
10 KiB
C++
// ======================================================================
|
|
//
|
|
// Copyright (c) 1999 The CGAL Consortium
|
|
//
|
|
// This software and related documentation is part of an INTERNAL release
|
|
// of the Computational Geometry Algorithms Library (CGAL). It is not
|
|
// intended for general use.
|
|
//
|
|
// ----------------------------------------------------------------------
|
|
//
|
|
// release : $CGAL_Revision: CGAL-2.4-I-62 $
|
|
// release_date : $CGAL_Date: 2002/03/12 $
|
|
//
|
|
// file : include/CGAL/Arr_leda_segment_traits_2.h
|
|
// package : Arrangement (2.37)
|
|
// maintainer : Eyal Flato <flato@math.tau.ac.il>
|
|
// author(s) : Iddo Hanniel
|
|
// Eyal Flato <flato@post.tau.ac.il>
|
|
// Efi Fogel <efif@post.tau.ac.il>
|
|
//
|
|
// coordinator : Tel-Aviv University (Dan Halperin <halperin@math.tau.ac.il>)
|
|
//
|
|
// ======================================================================
|
|
#ifndef CGAL_ARR_LEDA_SEGMENT_EXACT_TRAITS
|
|
#define CGAL_ARR_LEDA_SEGMENT_EXACT_TRAITS
|
|
|
|
#include <CGAL/LEDA_basic.h>
|
|
#include <CGAL/leda_integer.h>
|
|
#include <CGAL/Pm_segment_traits_2.h>
|
|
#include <CGAL/tags.h>
|
|
|
|
#include <list>
|
|
|
|
// if we use a LEDA version without namespaces we have to define a few macros
|
|
#if !defined(LEDA_NAMESPACE)
|
|
#define LEDA_BEGIN_NAMESPACE
|
|
#define LEDA_END_NAMESPACE
|
|
#define LEDA_NAMESPACE_NAME
|
|
#endif
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
#define CGAL_XT_SINGLE_POINT 1
|
|
#define CGAL_XT_ORIGINAL_POINT 2
|
|
|
|
template <class Kernel_>
|
|
class Arr_leda_segment_traits_2
|
|
: public Pm_segment_traits_2<Kernel_>
|
|
{
|
|
public:
|
|
Arr_leda_segment_traits_2() {}
|
|
|
|
public:
|
|
typedef Tag_false Has_left_category;
|
|
|
|
typedef Kernel_ Kernel;
|
|
typedef Pm_segment_traits_2<Kernel> Base;
|
|
|
|
typedef typename Base::Point_2 Point_2;
|
|
typedef typename Base::X_curve_2 X_curve_2;
|
|
typedef X_curve_2 Curve_2;
|
|
|
|
// Obsolete, for backward compatibility
|
|
typedef Point_2 Point;
|
|
typedef X_curve_2 X_curve;
|
|
typedef Curve_2 Curve;
|
|
|
|
public:
|
|
bool is_x_monotone(const Curve_2 & cv) {return true;}
|
|
//segments are x_monotone:
|
|
void make_x_monotone(const Curve_2 & cv, std::list<X_curve_2>& l) const
|
|
{
|
|
l.clear();
|
|
l.push_back(cv);
|
|
}
|
|
|
|
X_curve_2 curve_flip(const X_curve_2 & cv) const {
|
|
return cv.reversal();
|
|
}
|
|
|
|
void curve_split(const X_curve_2 & cv, X_curve_2 & c1, X_curve_2 & c2,
|
|
const Point_2 & split_pt) const
|
|
{
|
|
//split curve at split point (x coordinate) into c1 and c2
|
|
CGAL_precondition(curve_get_point_status(cv,split_pt) == EQUAL);
|
|
CGAL_precondition(curve_source(cv) != split_pt);
|
|
CGAL_precondition(curve_target(cv) != split_pt);
|
|
|
|
c1 = X_curve_2(cv.source(), split_pt);
|
|
c2 = X_curve_2(split_pt, cv.target());
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
bool nearest_intersection_to_right(const X_curve_2 & c1,
|
|
const X_curve_2 & c2,
|
|
const Point_2 & pt,
|
|
Point_2 & p1, Point_2 & p2) const
|
|
{
|
|
bool res = intersection_base(c1, c2, pt, true, true, p1, p2, dummy_int);
|
|
if ((res) && (dummy_int & CGAL_XT_SINGLE_POINT))
|
|
p2 = p1;
|
|
return res;
|
|
|
|
// Following implementation was commented out during to the
|
|
// introduction of intersection_base by Eyal to speed up the traits class.
|
|
/* X_curve_2 xcv;
|
|
bool res = c1.intersection(c2, xcv);
|
|
if (!res) return false;
|
|
|
|
if (lexicographically_xy_larger(xcv.source(),xcv.target()))
|
|
xcv=curve_flip(xcv);
|
|
if (lexicographically_xy_larger(xcv.target(),pt)) {
|
|
p2=point_normalize(xcv.target());
|
|
if (lexicographically_xy_larger(xcv.source(),pt))
|
|
p1=point_normalize(xcv.source());
|
|
else
|
|
p1=pt;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false; */
|
|
}
|
|
|
|
#ifndef CGAL_PMWX_TRAITS_HAVE_INTERSECT_TO_LEFT
|
|
|
|
X_curve_2 curve_reflect_in_x_and_y (const X_curve_2 & cv) const
|
|
{
|
|
X_curve_2 reflected_cv(point_reflect_in_x_and_y(cv.source()),
|
|
point_reflect_in_x_and_y(cv.target()));
|
|
return reflected_cv;
|
|
}
|
|
|
|
|
|
Point_2 point_reflect_in_x_and_y (const Point_2 & pt) const
|
|
{
|
|
Point_2 reflected_pt(-pt.xcoord(), -pt.ycoord());
|
|
return reflected_pt;
|
|
}
|
|
|
|
#else
|
|
|
|
/*!
|
|
*/
|
|
bool nearest_intersection_to_left(const X_curve_2 & c1,
|
|
const X_curve_2 & c2,
|
|
const Point_2 & pt,
|
|
Point_2 & p1,
|
|
Point_2 & p2) const
|
|
{
|
|
bool res = intersection_base(c1, c2, pt, false, true, p1, p2, dummy_int);
|
|
if ((res) && (dummy_int & CGAL_XT_SINGLE_POINT))
|
|
p2 = p1;
|
|
return res;
|
|
/*X_curve_2 xcv;
|
|
bool res = c1.intersection(c2, xcv);
|
|
if (!res) return false;
|
|
|
|
if (compare_xy(xcv.source(),xcv.target()) == SMALLER)
|
|
xcv=curve_flip(xcv);
|
|
if (compare_xy(xcv.target(),pt) == SMALLER) {
|
|
p2=point_normalize(xcv.target());
|
|
if (compare_xy(xcv.source(),pt) == SMALLER)
|
|
p1=point_normalize(xcv.source());
|
|
else
|
|
p1=pt;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;*/
|
|
}
|
|
|
|
#endif
|
|
|
|
bool curves_overlap(const X_curve_2 & ca, const X_curve_2 & cb) const {
|
|
X_curve_2 xcv;
|
|
// bool res =
|
|
ca.intersection(cb, xcv);
|
|
return !(xcv.is_trivial());
|
|
}
|
|
|
|
// returns values in p1 and p2 only if return_intersection is true
|
|
// if (xsect_type | CGAL_XT_SINGLE_POINT) then only p1 is returned
|
|
bool intersection_base(const X_curve_2 & c1, const X_curve_2 & c2,
|
|
const Point_2 & pt,
|
|
bool right, bool return_intersection,
|
|
Point_2 & p1, Point_2 & p2,
|
|
int & xsect_type) const
|
|
{
|
|
const Point_2 & c1_src = c1.source();
|
|
const Point_2 & c1_trg = c1.target();
|
|
const Point_2 & c2_src = c2.source();
|
|
const Point_2 & c2_trg = c2.target();
|
|
|
|
xsect_type = 0;
|
|
if (c1.is_trivial()) {
|
|
if (!c2.contains(c1_src)) return false;
|
|
if (right) {
|
|
if (compare_xy(c1_src, pt) == LARGER) {
|
|
// intersection is c1_src
|
|
xsect_type = CGAL_XT_SINGLE_POINT | CGAL_XT_ORIGINAL_POINT;
|
|
if (return_intersection) {
|
|
p1 = c1_src;
|
|
//p2 = p1;
|
|
}
|
|
return true;
|
|
}
|
|
} else {
|
|
if (compare_xy(c1_src,pt) == SMALLER) {
|
|
// intersection is c1_src
|
|
xsect_type = CGAL_XT_SINGLE_POINT | CGAL_XT_ORIGINAL_POINT;
|
|
if (return_intersection) {
|
|
p1 = c1_src;
|
|
//p2 = p1;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (c2.is_trivial()) {
|
|
if (!c1.contains(c2_src)) return false;
|
|
if (right) {
|
|
if (compare_xy(c2_src, pt) == LARGER) {
|
|
// intersection is c2_src
|
|
xsect_type = CGAL_XT_SINGLE_POINT | CGAL_XT_ORIGINAL_POINT;
|
|
if (return_intersection) {
|
|
p1 = c2_src;
|
|
//p2 = p1;
|
|
}
|
|
return true;
|
|
}
|
|
} else {
|
|
if (compare_xy(c2_src, pt) == SMALLER) {
|
|
// intersection is c2_src
|
|
xsect_type = CGAL_XT_SINGLE_POINT | CGAL_XT_ORIGINAL_POINT;
|
|
if (return_intersection) {
|
|
p1 = c2_src;
|
|
//p2 = p1;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
int o1 = CGAL_LEDA_SCOPE::orientation(c1, c2.start());
|
|
int o2 = CGAL_LEDA_SCOPE::orientation(c1, c2.end());
|
|
|
|
if (o1 == 0 && o2 == 0) {
|
|
int cmp_c1 = (CGAL_LEDA_SCOPE::compare (c1_src, c1_trg) > 0);
|
|
const Point_2 & sa = (cmp_c1) ? c1_trg : c1_src;
|
|
const Point_2 & sb = (cmp_c1) ? c1_src : c1_trg;
|
|
|
|
int cmp_c2 = (CGAL_LEDA_SCOPE::compare (c2_src, c2_trg) > 0);
|
|
const Point_2 & ta = (cmp_c2) ? c2_trg : c2_src;
|
|
const Point_2 & tb = (cmp_c2) ? c2_src : c2_trg;
|
|
|
|
const Point_2 & a = (CGAL_LEDA_SCOPE::compare(sa, ta) < 0) ? ta : sa;
|
|
const Point_2 & b = (CGAL_LEDA_SCOPE::compare(sb, tb) < 0) ? sb : tb;
|
|
|
|
if (CGAL_LEDA_SCOPE::compare(a,b) <= 0) {
|
|
// a is left-low to b
|
|
if (right) {
|
|
//intersection (not to the right) is rat_segment(a, b);
|
|
if (compare_xy(b, pt) == LARGER) {
|
|
xsect_type = 0;
|
|
if (return_intersection) {
|
|
//if (b_right)
|
|
p2 = point_normalize(b);
|
|
if (compare_xy(a, pt) == LARGER)
|
|
p1 = point_normalize(a);
|
|
else
|
|
p1 = pt;
|
|
}
|
|
return true;
|
|
}
|
|
} else {
|
|
//intersection (not to the right) is rat_segment(a, b);
|
|
if (compare_xy(a, pt) == SMALLER) {
|
|
xsect_type = 0;
|
|
if (return_intersection) {
|
|
p2 = point_normalize(a);
|
|
if (compare_xy(b, pt) == SMALLER)
|
|
p1 = point_normalize(b);
|
|
else
|
|
p1 = pt;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int o3 = CGAL_LEDA_SCOPE::orientation(c2, c1.start());
|
|
int o4 = CGAL_LEDA_SCOPE::orientation(c2, c1.end());
|
|
|
|
if (o1 != o2 && o3 != o4) {
|
|
leda_integer w = c1.dy() * c2.dx() - c2.dy() * c1.dx();
|
|
leda_integer m1 = c1.X2() * c1.Y1() - c1.X1() * c1.Y2();
|
|
leda_integer m2 = c2.X2() * c2.Y1() - c2.X1() * c2.Y2();
|
|
|
|
Point_2 p(m2*c1.dx() - m1*c2.dx(), m2*c1.dy() - m1*c2.dy(), w);
|
|
if (right) {
|
|
if (compare_xy(p, pt) == LARGER) {
|
|
//intersection is rat_segment(p, p);
|
|
if (return_intersection) {
|
|
xsect_type = CGAL_XT_SINGLE_POINT;
|
|
p1 = point_normalize(p);
|
|
//p2 = p1;
|
|
}
|
|
return true;
|
|
}
|
|
} else {
|
|
if (compare_xy(p, pt) == SMALLER) {
|
|
//intersection is rat_segment(p, p);
|
|
if (return_intersection) {
|
|
xsect_type = CGAL_XT_SINGLE_POINT;
|
|
p1 = point_normalize(p);
|
|
//p2 = p1;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
Point_2 point_normalize(const Point_2 & pt) const
|
|
{
|
|
leda_integer g, x, y, w;
|
|
x = pt.X();
|
|
y = pt.Y();
|
|
w = pt.W();
|
|
if (x.iszero() && y.iszero()) {
|
|
//g = w;
|
|
return Point_2(x,y,leda_integer(1));
|
|
}
|
|
else {
|
|
g = LEDA_NAMESPACE_NAME::gcd(x, y);
|
|
g = LEDA_NAMESPACE_NAME::gcd(g, w);
|
|
|
|
return Point_2(x/g,y/g,w/g);
|
|
}
|
|
|
|
}
|
|
|
|
// Dummies
|
|
mutable Point_2 dummy_pnt1, dummy_pnt2;
|
|
mutable int dummy_int;
|
|
};
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif
|