cgal/Packages/Cartesian_kernel/include/CGAL/Cartesian/Tetrahedron_3.h

301 lines
7.5 KiB
C++

// ======================================================================
//
// Copyright (c) 2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Cartesian/Tetrahedron_3.h
// revision : $Revision$
// revision_date : $Date$
// author(s) : Andreas Fabri
// coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr)
//
// ======================================================================
#ifndef CGAL_CARTESIAN_TETRAHEDRON_3_H
#define CGAL_CARTESIAN_TETRAHEDRON_3_H
#include <CGAL/Fourtuple.h>
#include <CGAL/Cartesian/solve_3.h>
#include <CGAL/Cartesian/predicates_on_points_3.h>
#include <vector>
#include <functional>
CGAL_BEGIN_NAMESPACE
template <class R_>
class TetrahedronC3
: public R_::template Handle<Fourtuple<typename R_::Point_3> >::type
{
CGAL_VC7_BUG_PROTECTED
typedef typename R_::FT FT;
typedef typename R_::Point_3 Point_3;
typedef typename R_::Plane_3 Plane_3;
typedef typename R_::Tetrahedron_3 Tetrahedron_3;
typedef typename R_::Aff_transformation_3 Aff_transformation_3;
typedef Fourtuple<Point_3> rep;
typedef typename R_::template Handle<rep>::type base;
public:
typedef R_ R;
TetrahedronC3()
: base(rep()) {}
TetrahedronC3(const Point_3 &p, const Point_3 &q, const Point_3 &r,
const Point_3 &s)
: base(rep(p, q, r, s)) {}
const Point_3 & vertex(int i) const;
const Point_3 & operator[](int i) const;
bool operator==(const TetrahedronC3 &t) const;
bool operator!=(const TetrahedronC3 &t) const;
Bbox_3 bbox() const;
Tetrahedron_3 transform(const Aff_transformation_3 &t) const
{
return TetrahedronC3<R>(t.transform(vertex(0)),
t.transform(vertex(1)),
t.transform(vertex(2)),
t.transform(vertex(3)));
}
Orientation orientation() const;
Oriented_side oriented_side(const Point_3 &p) const;
Bounded_side bounded_side(const Point_3 &p) const;
bool has_on_boundary(const Point_3 &p) const;
bool has_on_positive_side(const Point_3 &p) const;
bool has_on_negative_side(const Point_3 &p) const;
bool has_on_bounded_side(const Point_3 &p) const;
bool has_on_unbounded_side(const Point_3 &p) const;
bool is_degenerate() const;
FT volume() const;
};
template < class R >
bool
TetrahedronC3<R>::
operator==(const TetrahedronC3<R> &t) const
{
if (identical(t))
return true;
if (orientation() != t.orientation())
return false;
std::vector< Point_3 > V1;
std::vector< Point_3 > V2;
typename std::vector< Point_3 >::iterator uniq_end1;
typename std::vector< Point_3 >::iterator uniq_end2;
int k;
for ( k=0; k < 4; k++) V1.push_back( vertex(k));
for ( k=0; k < 4; k++) V2.push_back( t.vertex(k));
typename R::Less_xyz_3 Less_object = R().less_xyz_3_object();
std::sort(V1.begin(), V1.end(), Less_object);
std::sort(V2.begin(), V2.end(), Less_object);
uniq_end1 = std::unique( V1.begin(), V1.end());
uniq_end2 = std::unique( V2.begin(), V2.end());
V1.erase( uniq_end1, V1.end());
V2.erase( uniq_end2, V2.end());
return V1 == V2;
}
template < class R >
inline
bool
TetrahedronC3<R>::
operator!=(const TetrahedronC3<R> &t) const
{
return !(*this == t);
}
template < class R >
const typename TetrahedronC3<R>::Point_3 &
TetrahedronC3<R>::
vertex(int i) const
{
if (i<0) i=(i%4)+4;
else if (i>3) i=i%4;
switch (i)
{
case 0: return Ptr()->e0;
case 1: return Ptr()->e1;
case 2: return Ptr()->e2;
default: return Ptr()->e3;
}
}
template < class R >
inline
const typename TetrahedronC3<R>::Point_3 &
TetrahedronC3<R>::
operator[](int i) const
{
return vertex(i);
}
template < class R >
CGAL_KERNEL_MEDIUM_INLINE
typename TetrahedronC3<R>::FT
TetrahedronC3<R>::volume() const
{
typename R::Vector_3 v1 = vertex(1)-vertex(0);
typename R::Vector_3 v2 = vertex(2)-vertex(0);
typename R::Vector_3 v3 = vertex(3)-vertex(0);
return det3x3_by_formula(v1.x(), v1.y(), v1.z(),
v2.x(), v2.y(), v2.z(),
v3.x(), v3.y(), v3.z())/FT(6);
}
template < class R >
Orientation
TetrahedronC3<R>::
orientation() const
{
return CGAL::orientation(vertex(0), vertex(1), vertex(2), vertex(3));
}
template < class R >
Oriented_side
TetrahedronC3<R>::
oriented_side(const typename TetrahedronC3<R>::Point_3 &p) const
{
Orientation o = orientation();
if (o != ZERO)
return Oriented_side(o * bounded_side(p));
CGAL_assertion (!is_degenerate());
return ON_ORIENTED_BOUNDARY;
}
template < class R >
Bounded_side
TetrahedronC3<R>::
bounded_side(const typename TetrahedronC3<R>::Point_3 &p) const
{
FT alpha, beta, gamma;
solve(vertex(1)-vertex(0), vertex(2)-vertex(0), vertex(3)-vertex(0),
p - vertex(0), alpha, beta, gamma);
if ( (alpha < FT(0)) || (beta < FT(0)) || (gamma < FT(0))
|| (alpha + beta + gamma > FT(1)) )
return ON_UNBOUNDED_SIDE;
if ( (alpha == FT(0)) || (beta == FT(0)) || (gamma == FT(0))
|| (alpha+beta+gamma == FT(1)) )
return ON_BOUNDARY;
return ON_BOUNDED_SIDE;
}
template < class R >
inline
bool
TetrahedronC3<R>::has_on_boundary
(const typename TetrahedronC3<R>::Point_3 &p) const
{
return oriented_side(p) == ON_ORIENTED_BOUNDARY;
}
template < class R >
inline
bool
TetrahedronC3<R>::has_on_positive_side
(const typename TetrahedronC3<R>::Point_3 &p) const
{
return oriented_side(p) == ON_POSITIVE_SIDE;
}
template < class R >
inline
bool
TetrahedronC3<R>::has_on_negative_side
(const typename TetrahedronC3<R>::Point_3 &p) const
{
return oriented_side(p) == ON_NEGATIVE_SIDE;
}
template < class R >
inline
bool
TetrahedronC3<R>::has_on_bounded_side
(const typename TetrahedronC3<R>::Point_3 &p) const
{
return bounded_side(p) == ON_BOUNDED_SIDE;
}
template < class R >
inline
bool
TetrahedronC3<R>::has_on_unbounded_side
(const typename TetrahedronC3<R>::Point_3 &p) const
{
return bounded_side(p) == ON_UNBOUNDED_SIDE;
}
template < class R >
bool
TetrahedronC3<R>::is_degenerate() const
{
Plane_3 plane(vertex(0), vertex(1), vertex(2));
return (plane.is_degenerate()) ? true
: plane.has_on(vertex(3));
}
template < class R >
inline
Bbox_3
TetrahedronC3<R>::bbox() const
{
return vertex(0).bbox() + vertex(1).bbox()
+ vertex(2).bbox() + vertex(3).bbox();
}
#ifndef CGAL_NO_OSTREAM_INSERT_TETRAHEDRONC3
template < class R >
std::ostream &
operator<<(std::ostream &os, const TetrahedronC3<R> &t)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
return os << t[0] << ' ' << t[1] << ' ' << t[2] << ' ' << t[3];
case IO::BINARY :
return os << t[0] << t[1] << t[2] << t[3];
default:
os << "TetrahedronC3(" << t[0] << ", " << t[1] << ", " << t[2];
os << ", " << t[3] << ")";
return os;
}
}
#endif // CGAL_NO_OSTREAM_INSERT_TETRAHEDRONC3
#ifndef CGAL_NO_ISTREAM_EXTRACT_TETRAHEDRONC3
template < class R >
std::istream &
operator>>(std::istream &is, TetrahedronC3<R> &t)
{
typename R::Point_3 p, q, r, s;
is >> p >> q >> r >> s;
if (is)
t = TetrahedronC3<R>(p, q, r, s);
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_TETRAHEDRONC3
CGAL_END_NAMESPACE
#endif // CGAL_CARTESIAN_TETRAHEDRON_3_H