mirror of https://github.com/CGAL/cgal
300 lines
7.4 KiB
C++
300 lines
7.4 KiB
C++
// ======================================================================
|
|
//
|
|
// Copyright (c) 2000 The CGAL Consortium
|
|
//
|
|
// This software and related documentation is part of an INTERNAL release
|
|
// of the Computational Geometry Algorithms Library (CGAL). It is not
|
|
// intended for general use.
|
|
//
|
|
// ----------------------------------------------------------------------
|
|
//
|
|
// release :
|
|
// release_date :
|
|
//
|
|
// file : include/CGAL/Cartesian/Triangle_2.h
|
|
// revision : $Revision$
|
|
// revision_date : $Date$
|
|
// author(s) : Andreas Fabri, Herve Bronnimann
|
|
// coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr)
|
|
//
|
|
// ======================================================================
|
|
|
|
#ifndef CGAL_CARTESIAN_TRIANGLE_2_H
|
|
#define CGAL_CARTESIAN_TRIANGLE_2_H
|
|
|
|
#include <CGAL/Threetuple.h>
|
|
#include <CGAL/Cartesian/predicates_on_points_2.h>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
template <class R_>
|
|
class TriangleC2
|
|
: public R_::template Handle<Threetuple<typename R_::Point_2> >::type
|
|
{
|
|
CGAL_VC7_BUG_PROTECTED
|
|
typedef typename R_::FT FT;
|
|
typedef typename R_::Point_2 Point_2;
|
|
typedef typename R_::Vector_2 Vector_2;
|
|
typedef typename R_::Triangle_2 Triangle_2;
|
|
typedef typename R_::Aff_transformation_2 Aff_transformation_2;
|
|
|
|
typedef Threetuple<Point_2> rep;
|
|
typedef typename R_::template Handle<rep>::type base;
|
|
|
|
public:
|
|
typedef R_ R;
|
|
|
|
TriangleC2()
|
|
: base(rep()) {}
|
|
|
|
TriangleC2(const Point_2 &p, const Point_2 &q, const Point_2 &r)
|
|
: base(rep(p, q, r)) {}
|
|
|
|
bool operator==(const TriangleC2 &s) const;
|
|
bool operator!=(const TriangleC2 &s) const;
|
|
|
|
const Point_2 & vertex(int i) const;
|
|
const Point_2 & operator[](int i) const;
|
|
|
|
Triangle_2 opposite() const;
|
|
Triangle_2 transform(const Aff_transformation_2 &t) const
|
|
{
|
|
return TriangleC2<R>(t.transform(vertex(0)),
|
|
t.transform(vertex(1)),
|
|
t.transform(vertex(2)));
|
|
}
|
|
|
|
Orientation orientation() const;
|
|
Oriented_side oriented_side(const Point_2 &p) const;
|
|
Bounded_side bounded_side(const Point_2 &p) const;
|
|
|
|
bool has_on_boundary(const Point_2 &p) const;
|
|
|
|
bool has_on_bounded_side(const Point_2 &p) const;
|
|
bool has_on_unbounded_side(const Point_2 &p) const;
|
|
|
|
bool has_on_positive_side(const Point_2 &p) const;
|
|
bool has_on_negative_side(const Point_2 &p) const;
|
|
|
|
bool is_degenerate() const;
|
|
|
|
Bbox_2 bbox() const;
|
|
|
|
FT area() const;
|
|
};
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_MEDIUM_INLINE
|
|
bool
|
|
TriangleC2<R>::operator==(const TriangleC2<R> &t) const
|
|
{
|
|
if (identical(t))
|
|
return true;
|
|
|
|
int i;
|
|
for(i=0; i<3; i++)
|
|
if ( vertex(0) == t.vertex(i) )
|
|
break;
|
|
|
|
return (i<3) && vertex(1) == t.vertex(i+1) && vertex(2) == t.vertex(i+2);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TriangleC2<R>::operator!=(const TriangleC2<R> &t) const
|
|
{
|
|
return !(*this == t);
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_MEDIUM_INLINE
|
|
const typename TriangleC2<R>::Point_2 &
|
|
TriangleC2<R>::vertex(int i) const
|
|
{
|
|
if (i>2) i = i%3;
|
|
else if (i<0) i = (i%3) + 3;
|
|
return (i==0) ? Ptr()->e0 :
|
|
(i==1) ? Ptr()->e1 :
|
|
Ptr()->e2;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
const typename TriangleC2<R>::Point_2 &
|
|
TriangleC2<R>::operator[](int i) const
|
|
{
|
|
return vertex(i);
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_MEDIUM_INLINE
|
|
typename TriangleC2<R>::FT
|
|
TriangleC2<R>::area() const
|
|
{
|
|
typename R::Vector_2 v1 = vertex(1)-vertex(0);
|
|
typename R::Vector_2 v2 = vertex(2)-vertex(0);
|
|
return det2x2_by_formula(v1.x(), v1.y(), v2.x(), v2.y())/FT(2);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
Orientation
|
|
TriangleC2<R>::orientation() const
|
|
{
|
|
return CGAL::orientation(vertex(0), vertex(1), vertex(2));
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_LARGE_INLINE
|
|
Bounded_side
|
|
TriangleC2<R>::
|
|
bounded_side(const typename TriangleC2<R>::Point_2 &p) const
|
|
{
|
|
Orientation o1 = CGAL::orientation(vertex(0), vertex(1), p),
|
|
o2 = CGAL::orientation(vertex(1), vertex(2), p),
|
|
o3 = CGAL::orientation(vertex(2), vertex(3), p);
|
|
|
|
if (o2 == o1 && o3 == o1)
|
|
return ON_BOUNDED_SIDE;
|
|
return
|
|
(o1 == COLLINEAR
|
|
&& collinear_are_ordered_along_line(vertex(0), p, vertex(1))) ||
|
|
(o2 == COLLINEAR
|
|
&& collinear_are_ordered_along_line(vertex(1), p, vertex(2))) ||
|
|
(o3 == COLLINEAR
|
|
&& collinear_are_ordered_along_line(vertex(2), p, vertex(3)))
|
|
? ON_BOUNDARY
|
|
: ON_UNBOUNDED_SIDE;
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_LARGE_INLINE
|
|
Oriented_side
|
|
TriangleC2<R>::
|
|
oriented_side(const typename TriangleC2<R>::Point_2 &p) const
|
|
{
|
|
// depends on the orientation of the vertices
|
|
Orientation o1 = CGAL::orientation(vertex(0), vertex(1), p),
|
|
o2 = CGAL::orientation(vertex(1), vertex(2), p),
|
|
o3 = CGAL::orientation(vertex(2), vertex(3), p),
|
|
ot = CGAL::orientation(vertex(0), vertex(1), vertex(2));
|
|
|
|
if (o1 == ot && o2 == ot && o3 == ot) // ot cannot be COLLINEAR
|
|
return Oriented_side(ot);
|
|
return
|
|
(o1 == COLLINEAR
|
|
&& collinear_are_ordered_along_line(vertex(0), p, vertex(1))) ||
|
|
(o2 == COLLINEAR
|
|
&& collinear_are_ordered_along_line(vertex(1), p, vertex(2))) ||
|
|
(o3 == COLLINEAR
|
|
&& collinear_are_ordered_along_line(vertex(2), p, vertex(3)))
|
|
? ON_ORIENTED_BOUNDARY
|
|
: Oriented_side(-ot);
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_LARGE_INLINE
|
|
bool
|
|
TriangleC2<R>::
|
|
has_on_bounded_side(const typename TriangleC2<R>::Point_2 &p) const
|
|
{
|
|
return bounded_side(p) == ON_BOUNDED_SIDE;
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_LARGE_INLINE
|
|
bool
|
|
TriangleC2<R>::
|
|
has_on_unbounded_side(const typename TriangleC2<R>::Point_2 &p) const
|
|
{
|
|
return bounded_side(p) == ON_UNBOUNDED_SIDE;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TriangleC2<R>::
|
|
has_on_boundary(const typename TriangleC2<R>::Point_2 &p) const
|
|
{
|
|
return bounded_side(p) == ON_BOUNDARY;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TriangleC2<R>::
|
|
has_on_negative_side(const typename TriangleC2<R>::Point_2 &p) const
|
|
{
|
|
return oriented_side(p) == ON_NEGATIVE_SIDE;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TriangleC2<R>::
|
|
has_on_positive_side(const typename TriangleC2<R>::Point_2 &p) const
|
|
{
|
|
return oriented_side(p) == ON_POSITIVE_SIDE;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TriangleC2<R>::is_degenerate() const
|
|
{
|
|
return collinear(vertex(0), vertex(1), vertex(2));
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
Bbox_2
|
|
TriangleC2<R>::bbox() const
|
|
{
|
|
return vertex(0).bbox() + vertex(1).bbox() + vertex(2).bbox();
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename TriangleC2<R>::Triangle_2
|
|
TriangleC2<R>::opposite() const
|
|
{
|
|
return TriangleC2<R>(vertex(0), vertex(2), vertex(1));
|
|
}
|
|
|
|
#ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLEC2
|
|
template < class R >
|
|
std::ostream &
|
|
operator<<(std::ostream &os, const TriangleC2<R> &t)
|
|
{
|
|
switch(os.iword(IO::mode)) {
|
|
case IO::ASCII :
|
|
return os << t[0] << ' ' << t[1] << ' ' << t[2];
|
|
case IO::BINARY :
|
|
return os << t[0] << t[1] << t[2];
|
|
default:
|
|
return os<< "TriangleC2(" << t[0] << ", "
|
|
<< t[1] << ", " << t[2] <<")";
|
|
}
|
|
}
|
|
#endif // CGAL_NO_OSTREAM_INSERT_TRIANGLEC2
|
|
|
|
#ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC2
|
|
template < class R >
|
|
std::istream &
|
|
operator>>(std::istream &is, TriangleC2<R> &t)
|
|
{
|
|
typename R::Point_2 p, q, r;
|
|
|
|
is >> p >> q >> r;
|
|
|
|
if (is)
|
|
t = TriangleC2<R>(p, q, r);
|
|
return is;
|
|
}
|
|
#endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC2
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif // CGAL_CARTESIAN_TRIANGLE_2_H
|