mirror of https://github.com/CGAL/cgal
202 lines
4.8 KiB
C++
202 lines
4.8 KiB
C++
// ======================================================================
|
|
//
|
|
// Copyright (c) 2000 The CGAL Consortium
|
|
//
|
|
// This software and related documentation is part of an INTERNAL release
|
|
// of the Computational Geometry Algorithms Library (CGAL). It is not
|
|
// intended for general use.
|
|
//
|
|
// ----------------------------------------------------------------------
|
|
//
|
|
// release :
|
|
// release_date :
|
|
//
|
|
// file : include/CGAL/Cartesian/Triangle_3.h
|
|
// revision : $Revision$
|
|
// revision_date : $Date$
|
|
// author(s) : Andreas Fabri
|
|
// coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr)
|
|
//
|
|
// ======================================================================
|
|
|
|
#ifndef CGAL_CARTESIAN_TRIANGLE_3_H
|
|
#define CGAL_CARTESIAN_TRIANGLE_3_H
|
|
|
|
#include <CGAL/Threetuple.h>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
template <class R_>
|
|
class TriangleC3
|
|
: public R_::template Handle<Threetuple<typename R_::Point_3> >::type
|
|
{
|
|
CGAL_VC7_BUG_PROTECTED
|
|
typedef typename R_::FT FT;
|
|
typedef typename R_::Point_3 Point_3;
|
|
typedef typename R_::Vector_3 Vector_3;
|
|
typedef typename R_::Plane_3 Plane_3;
|
|
typedef typename R_::Triangle_3 Triangle_3;
|
|
typedef typename R_::Aff_transformation_3 Aff_transformation_3;
|
|
|
|
typedef Threetuple<Point_3> rep;
|
|
typedef typename R_::template Handle<rep>::type base;
|
|
|
|
public:
|
|
typedef R_ R;
|
|
|
|
TriangleC3()
|
|
: base(rep()) {}
|
|
|
|
TriangleC3(const Point_3 &p, const Point_3 &q, const Point_3 &r)
|
|
: base(rep(p, q, r)) {}
|
|
|
|
bool operator==(const TriangleC3 &t) const;
|
|
bool operator!=(const TriangleC3 &t) const;
|
|
|
|
Plane_3 supporting_plane() const;
|
|
|
|
Triangle_3 transform(const Aff_transformation_3 &t) const
|
|
{
|
|
return TriangleC3<R>(t.transform(vertex(0)),
|
|
t.transform(vertex(1)),
|
|
t.transform(vertex(2)));
|
|
}
|
|
|
|
bool has_on(const Point_3 &p) const;
|
|
bool is_degenerate() const;
|
|
|
|
const Point_3 & vertex(int i) const;
|
|
const Point_3 & operator[](int i) const;
|
|
|
|
Bbox_3 bbox() const;
|
|
|
|
FT squared_area() const;
|
|
};
|
|
|
|
template < class R >
|
|
bool
|
|
TriangleC3<R>::operator==(const TriangleC3<R> &t) const
|
|
{
|
|
if (identical(t))
|
|
return true;
|
|
|
|
int i;
|
|
for(i=0; i<3; i++)
|
|
if ( vertex(0) == t.vertex(i) )
|
|
break;
|
|
|
|
return (i<3) && vertex(1) == t.vertex(i+1) && vertex(2) == t.vertex(i+2);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
TriangleC3<R>::operator!=(const TriangleC3<R> &t) const
|
|
{
|
|
return !(*this == t);
|
|
}
|
|
|
|
template < class R >
|
|
const typename TriangleC3<R>::Point_3 &
|
|
TriangleC3<R>::vertex(int i) const
|
|
{
|
|
if (i<0) i=(i%3)+3;
|
|
else if (i>2) i=i%3;
|
|
return (i==0) ? Ptr()->e0 :
|
|
(i==1) ? Ptr()->e1 :
|
|
Ptr()->e2;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
const typename TriangleC3<R>::Point_3 &
|
|
TriangleC3<R>::operator[](int i) const
|
|
{
|
|
return vertex(i);
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_MEDIUM_INLINE
|
|
typename TriangleC3<R>::FT
|
|
TriangleC3<R>::squared_area() const
|
|
{
|
|
typename R::Vector_3 v1 = vertex(1)-vertex(0);
|
|
typename R::Vector_3 v2 = vertex(2)-vertex(0);
|
|
typename R::Vector_3 v3 = cross_product(v1, v2);
|
|
return (v3.squared_length())/FT(4);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename TriangleC3<R>::Plane_3
|
|
TriangleC3<R>::supporting_plane() const
|
|
{
|
|
return Plane_3(vertex(0), vertex(1), vertex(2));
|
|
}
|
|
|
|
template < class R >
|
|
Bbox_3
|
|
TriangleC3<R>::bbox() const
|
|
{
|
|
return vertex(0).bbox() + vertex(1).bbox() + vertex(2).bbox();
|
|
}
|
|
|
|
template < class R >
|
|
bool
|
|
TriangleC3<R>::
|
|
has_on(const typename TriangleC3<R>::Point_3 &p) const
|
|
{
|
|
Point_3 o = vertex(0) + supporting_plane().orthogonal_vector();
|
|
Vector_3 v0 = vertex(0)-o,
|
|
v1 = vertex(1)-o,
|
|
v2 = vertex(2)-o;
|
|
|
|
FT alpha, beta, gamma;
|
|
solve(v0, v1, v2, p-o, alpha, beta, gamma);
|
|
return (alpha >= FT(0)) && (beta >= FT(0)) && (gamma >= FT(0))
|
|
&& ((alpha+beta+gamma == FT(1)));
|
|
}
|
|
|
|
template < class R >
|
|
bool
|
|
TriangleC3<R>::is_degenerate() const
|
|
{
|
|
return collinear(vertex(0),vertex(1),vertex(2));
|
|
}
|
|
|
|
#ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLEC3
|
|
template < class R >
|
|
std::ostream &
|
|
operator<<(std::ostream &os, const TriangleC3<R> &t)
|
|
{
|
|
switch(os.iword(IO::mode)) {
|
|
case IO::ASCII :
|
|
return os << t[0] << ' ' << t[1] << ' ' << t[2];
|
|
case IO::BINARY :
|
|
return os << t[0] << t[1] << t[2];
|
|
default:
|
|
os << "TriangleC3(" << t[0] << ", " << t[1] << ", " << t[2] <<")";
|
|
return os;
|
|
}
|
|
}
|
|
#endif // CGAL_NO_OSTREAM_INSERT_TRIANGLEC3
|
|
|
|
#ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC3
|
|
template < class R >
|
|
std::istream &
|
|
operator>>(std::istream &is, TriangleC3<R> &t)
|
|
{
|
|
typename R::Point_3 p, q, r;
|
|
|
|
is >> p >> q >> r;
|
|
|
|
if (is)
|
|
t = TriangleC3<R>(p, q, r);
|
|
return is;
|
|
}
|
|
#endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC3
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif // CGAL_CARTESIAN_TRIANGLE_3_H
|