cgal/Packages/Cartesian_kernel/include/CGAL/Cartesian/Vector_2.h

307 lines
6.3 KiB
C++

// ======================================================================
//
// Copyright (c) 2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Cartesian/Vector_2.h
// revision : $Revision$
// revision_date : $Date$
// author(s) : Andreas Fabri, Herve Bronnimann
// coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr)
//
// ======================================================================
#ifndef CGAL_CARTESIAN_VECTOR_2_H
#define CGAL_CARTESIAN_VECTOR_2_H
#include <CGAL/Origin.h>
#include <CGAL/Twotuple.h>
CGAL_BEGIN_NAMESPACE
template < class R_ >
class VectorC2
: public R_::template Handle<Twotuple<typename R_::FT> >::type
{
CGAL_VC7_BUG_PROTECTED
typedef typename R_::FT FT;
typedef typename R_::Point_2 Point_2;
typedef typename R_::Direction_2 Direction_2;
typedef typename R_::Vector_2 Vector_2;
typedef typename R_::Aff_transformation_2 Aff_transformation_2;
typedef Twotuple<FT> rep;
typedef typename R_::template Handle<rep>::type base;
public:
typedef R_ R;
VectorC2()
: base(rep()) {}
VectorC2(const Null_vector &)
: base(rep(FT(0), FT(0))) {}
VectorC2(const Point_2 &p)
: base(p) {}
VectorC2(const Point_2 &a, const Point_2 &b)
: base(b-a) {}
VectorC2(const Direction_2 &d)
: base(d) {}
VectorC2(const FT &x, const FT &y)
: base(rep(x, y)) {}
VectorC2(const FT &hx, const FT &hy, const FT &hw)
{
if (hw != FT(1))
initialize_with(rep(hx/hw, hy/hw));
else
initialize_with(rep(hx, hy));
}
const FT & x() const
{
return Ptr()->e0;
}
const FT & y() const
{
return Ptr()->e1;
}
const FT & hx() const
{
return x();
}
const FT & hy() const
{
return y();
}
FT hw() const
{
return FT(1);
}
const FT & cartesian(int i) const;
const FT & operator[](int i) const;
FT homogeneous(int i) const;
int dimension() const
{
return 2;
}
Vector_2 operator+(const VectorC2 &w) const;
Vector_2 operator-(const VectorC2 &w) const;
Vector_2 operator-() const;
FT operator*(const VectorC2 &w) const;
FT squared_length() const;
Vector_2 operator/(const FT &c) const;
Direction_2 direction() const;
Vector_2 perpendicular(const Orientation &o) const;
Vector_2 transform(const Aff_transformation_2 &t) const
{
return t.transform(*this);
}
};
template < class R >
CGAL_KERNEL_INLINE
bool
operator==(const VectorC2<R> &v, const VectorC2<R> &w)
{
return w.x() == v.x() && w.y() == v.y();
}
template < class R >
inline
bool
operator!=(const VectorC2<R> &v, const VectorC2<R> &w)
{
return !(v == w);
}
template < class R >
inline
bool
operator==(const VectorC2<R> &v, const Null_vector &)
{
return CGAL_NTS is_zero(v.x()) && CGAL_NTS is_zero(v.y());
}
template < class R >
inline
bool
operator==(const Null_vector &n, const VectorC2<R> &v)
{
return v == n;
}
template < class R >
inline
bool
operator!=(const VectorC2<R> &v, const Null_vector &n)
{
return !(v == n);
}
template < class R >
inline
bool
operator!=(const Null_vector &n, const VectorC2<R> &v)
{
return !(v == n);
}
template < class R >
CGAL_KERNEL_INLINE
const typename VectorC2<R>::FT &
VectorC2<R>::cartesian(int i) const
{
CGAL_kernel_precondition( (i == 0) || (i == 1) );
return (i == 0) ? x() : y();
}
template < class R >
inline
const typename VectorC2<R>::FT &
VectorC2<R>::operator[](int i) const
{
return cartesian(i);
}
template < class R >
CGAL_KERNEL_INLINE
typename VectorC2<R>::FT
VectorC2<R>::homogeneous(int i) const
{
return (i == 2) ? FT(1) : cartesian(i);
}
template < class R >
CGAL_KERNEL_INLINE
typename VectorC2<R>::Vector_2
VectorC2<R>::operator+(const VectorC2<R> &w) const
{
return VectorC2<R>(x() + w.x(), y() + w.y());
}
template < class R >
CGAL_KERNEL_INLINE
typename VectorC2<R>::Vector_2
VectorC2<R>::operator-(const VectorC2<R> &w) const
{
return VectorC2<R>(x() - w.x(), y() - w.y());
}
template < class R >
inline
typename VectorC2<R>::Vector_2
VectorC2<R>::operator-() const
{
return R().construct_opposite_vector_2_object()(*this);
}
template < class R >
CGAL_KERNEL_INLINE
typename VectorC2<R>::FT
VectorC2<R>::operator*(const VectorC2<R> &w) const
{
return x() * w.x() + y() * w.y();
}
template < class R >
CGAL_KERNEL_INLINE
typename VectorC2<R>::FT
VectorC2<R>::squared_length() const
{
return CGAL_NTS square(x()) + CGAL_NTS square(y());
}
template < class R >
CGAL_KERNEL_INLINE
typename VectorC2<R>::Vector_2
VectorC2<R>::
operator/(const typename VectorC2<R>::FT &c) const
{
return VectorC2<R>( x()/c, y()/c);
}
template < class R >
inline
typename VectorC2<R>::Direction_2
VectorC2<R>::direction() const
{
return Direction_2(*this);
}
template < class R >
CGAL_KERNEL_MEDIUM_INLINE
typename VectorC2<R>::Vector_2
VectorC2<R>::perpendicular(const Orientation &o) const
{
CGAL_kernel_precondition( o != COLLINEAR );
if (o == COUNTERCLOCKWISE)
return VectorC2<R>(-y(), x());
else
return VectorC2<R>(y(), -x());
}
#ifndef CGAL_NO_OSTREAM_INSERT_VECTORC2
template < class R >
std::ostream &
operator<<(std::ostream &os, const VectorC2<R> &v)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
return os << v.x() << ' ' << v.y();
case IO::BINARY :
write(os, v.x());
write(os, v.y());
return os;
default:
return os << "VectorC2(" << v.x() << ", " << v.y() << ')';
}
}
#endif // CGAL_NO_OSTREAM_INSERT_VECTORC2
#ifndef CGAL_NO_ISTREAM_EXTRACT_VECTORC2
template < class R >
std::istream &
operator>>(std::istream &is, VectorC2<R> &p)
{
typename R::FT x, y;
switch(is.iword(IO::mode)) {
case IO::ASCII :
is >> x >> y;
break;
case IO::BINARY :
read(is, x);
read(is, y);
break;
default:
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
if (is)
p = VectorC2<R>(x, y);
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_VECTORC2
CGAL_END_NAMESPACE
#endif // CGAL_CARTESIAN_VECTOR_2_H