cgal/Packages/Cartesian_kernel/include/CGAL/Cartesian/Vector_3.h

308 lines
6.3 KiB
C++

// ======================================================================
//
// Copyright (c) 2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Cartesian/Vector_3.h
// revision : $Revision$
// revision_date : $Date$
// author : Andreas Fabri
// coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr)
//
// ======================================================================
#ifndef CGAL_CARTESIAN_VECTOR_3_H
#define CGAL_CARTESIAN_VECTOR_3_H
#include <CGAL/Origin.h>
#include <CGAL/Threetuple.h>
CGAL_BEGIN_NAMESPACE
template < class R_ >
class VectorC3
: public R_::template Handle<Threetuple<typename R_::FT> >::type
{
CGAL_VC7_BUG_PROTECTED
typedef typename R_::FT FT;
typedef typename R_::Point_3 Point_3;
typedef typename R_::Vector_3 Vector_3;
typedef typename R_::Direction_3 Direction_3;
typedef typename R_::Aff_transformation_3 Aff_transformation_3;
typedef Threetuple<FT> rep;
typedef typename R_::template Handle<rep>::type base;
public:
typedef R_ R;
VectorC3()
: base(rep()) {}
VectorC3(const Null_vector &)
: base(rep(FT(0), FT(0), FT(0))) {}
VectorC3(const Point_3 &p)
: base(p) {}
VectorC3(const Point_3 &a, const Point_3 &b)
: base(b-a) {}
VectorC3(const Direction_3 &d)
: base(d) {}
VectorC3(const FT &x, const FT &y, const FT &z)
: base(rep(x, y, z)) {}
VectorC3(const FT &x, const FT &y, const FT &z, const FT &w)
{
if (w != FT(1))
initialize_with(rep(x/w, y/w, z/w));
else
initialize_with(rep(x, y, z));
}
const FT & x() const
{
return Ptr()->e0;
}
const FT & y() const
{
return Ptr()->e1;
}
const FT & z() const
{
return Ptr()->e2;
}
const FT & hx() const
{
return x();
}
const FT & hy() const
{
return y();
}
const FT & hz() const
{
return z();
}
FT hw() const
{
return FT(1);
}
const FT & cartesian(int i) const;
const FT & operator[](int i) const;
FT homogeneous(int i) const;
int dimension() const
{
return 3;
}
Vector_3 operator+(const VectorC3 &w) const;
Vector_3 operator-(const VectorC3 &w) const;
Vector_3 operator-() const;
Vector_3 operator/(const FT &c) const;
FT operator*(const VectorC3 &w) const;
FT squared_length() const;
Direction_3 direction() const;
Vector_3 transform(const Aff_transformation_3 &t) const
{
return t.transform(*this);
}
};
template < class R >
inline
bool
operator==(const VectorC3<R> &v, const VectorC3<R> &w)
{
return w.x() == v.x() && w.y() == v.y() && w.z() == v.z();
}
template < class R >
inline
bool
operator!=(const VectorC3<R> &v, const VectorC3<R> &w)
{
return !(v == w);
}
template < class R >
inline
bool
operator==(const VectorC3<R> &v, const Null_vector &)
{
return CGAL_NTS is_zero(v.x()) && CGAL_NTS is_zero(v.y()) &&
CGAL_NTS is_zero(v.z());
}
template < class R >
inline
bool
operator==(const Null_vector &n, const VectorC3<R> &v)
{
return v == n;
}
template < class R >
inline
bool
operator!=(const VectorC3<R> &v, const Null_vector &n)
{
return !(v == n);
}
template < class R >
inline
bool
operator!=(const Null_vector &n, const VectorC3<R> &v)
{
return !(v == n);
}
template < class R >
inline
const typename VectorC3<R>::FT &
VectorC3<R>::cartesian(int i) const
{
CGAL_kernel_precondition( (i>=0) && (i<3) );
if (i==0) return x();
if (i==1) return y();
return z();
}
template < class R >
inline
const typename VectorC3<R>::FT &
VectorC3<R>::operator[](int i) const
{
return cartesian(i);
}
template < class R >
typename VectorC3<R>::FT
VectorC3<R>::homogeneous(int i) const
{
if (i==3) return FT(1);
return cartesian(i);
}
template < class R >
inline
typename VectorC3<R>::Vector_3
VectorC3<R>::
operator+(const VectorC3<R> &w) const
{
return VectorC3<R>(x() + w.x(), y() + w.y(), z() + w.z());
}
template < class R >
inline
typename VectorC3<R>::Vector_3
VectorC3<R>::operator-(const VectorC3<R> &w) const
{
return VectorC3<R>(x() - w.x(), y() - w.y(), z() - w.z());
}
template < class R >
inline
typename VectorC3<R>::Vector_3
VectorC3<R>::operator-() const
{
return R().construct_opposite_vector_3_object()(*this);
}
template < class R >
inline
typename VectorC3<R>::FT
VectorC3<R>::operator*(const VectorC3<R> &w) const
{
return x() * w.x() + y() * w.y() + z() * w.z();
}
template < class R >
inline
typename VectorC3<R>::FT
VectorC3<R>::squared_length() const
{
return CGAL_NTS square(x()) + CGAL_NTS square(y()) + CGAL_NTS square(z());
}
template < class R >
inline
typename VectorC3<R>::Vector_3
VectorC3<R>::
operator/(const typename VectorC3<R>::FT &c) const
{
return VectorC3<R>(x()/c, y()/c, z()/c);
}
template < class R >
inline
typename VectorC3<R>::Direction_3
VectorC3<R>::direction() const
{
return Direction_3(*this);
}
#ifndef CGAL_CARTESIAN_NO_OSTREAM_INSERT_VECTORC3
template < class R >
std::ostream &
operator<<(std::ostream &os, const VectorC3<R> &v)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
return os << v.x() << ' ' << v.y() << ' ' << v.z();
case IO::BINARY :
write(os, v.x());
write(os, v.y());
write(os, v.z());
return os;
default:
os << "VectorC3(" << v.x() << ", " << v.y() << ", " << v.z() << ")";
return os;
}
}
#endif // CGAL_CARTESIAN_NO_OSTREAM_INSERT_VECTORC3
#ifndef CGAL_CARTESIAN_NO_ISTREAM_EXTRACT_VECTORC3
template < class R >
std::istream &
operator>>(std::istream &is, VectorC3<R> &p)
{
typename R::FT x, y, z;
switch(is.iword(IO::mode)) {
case IO::ASCII :
is >> x >> y >> z;
break;
case IO::BINARY :
read(is, x);
read(is, y);
read(is, z);
break;
default:
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
if (is)
p = VectorC3<R>(x, y, z);
return is;
}
#endif // CGAL_CARTESIAN_NO_ISTREAM_EXTRACT_VECTORC3
CGAL_END_NAMESPACE
#endif // CGAL_CARTESIAN_VECTOR_3_H