cgal/Packages/Partition_2/include/CGAL/Rotation_tree_2.h

190 lines
5.7 KiB
C++

// ============================================================================
//
// Copyright (c) 2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------------
//
// release : $CGAL_Revision $
// release_date : $CGAL_Date $
//
// file : include/CGAL/Rotation_tree_2.h
// package : $CGAL_Package: Partition_2 $
// maintainer : Susan Hert <hert@mpi-sb.mpg.de>
// chapter : Planar Polygon Partitioning
//
// revision : $Revision$
// revision_date : $Date$
//
// author(s) : Susan Hert <hert@mpi-sb.mpg.de>
//
// coordinator : MPI (Susan Hert <hert@mpi-sb.mpg.de>)
//
// implementation: Rotation tree for vertex visibility graph computation
// ============================================================================
/*
A rotation tree for computing the vertex visibility graph of a set of
non-intersecting segments in the plane (e.g. edges of a polygon).
Let $V$ be the set of segment endpoints and
let $p_{\infinity}$ ($p_{-\infinity}$) be a point with $y$ coordinate
$\infinity$ ($-\infinity$) and $x$ coordinate larger than all points
in $V$. The tree $G$ is a tree with node set
$V \cup \{p_{\infinity}, p_{-\infinity}\}$. Every node (except the one
corresponding to $p_{\infinity}$) has exactly one outgoing edge to the
point $q$ with the following property: $q$ is the first point encountered
when looking from $p$ in direction $d$ and rotating counterclockwise.
*/
#ifndef CGAL_ROTATION_TREE_H
#define CGAL_ROTATION_TREE_H
// MSVC6 doesn't work with the CGALi::vector but it does with the std::vector
// (from stlport?)
#if (defined( _MSC_VER) && (_MSC_VER <= 1200)) || defined(__BORLANDC__)
#include <vector>
#else
#include <CGAL/vector.h>
#endif // MSVC6
#include <CGAL/Rotation_tree_node_2.h>
#include <CGAL/functional.h>
namespace CGAL {
template <class Traits_>
#if (defined( _MSC_VER) && (_MSC_VER <= 1200)) || defined(__BORLANDC__)
class Rotation_tree_2 : public std::vector< Rotation_tree_node_2<Traits_> >
#else
class Rotation_tree_2 : public CGALi::vector< Rotation_tree_node_2<Traits_> >
#endif // MSVC 6
{
public:
typedef Traits_ Traits;
typedef Rotation_tree_node_2<Traits> Node;
#if (defined( _MSC_VER) && (_MSC_VER <= 1200)) || defined(__BORLANDC__)
typedef typename std::vector<Node>::iterator Self_iterator;
#else
typedef typename CGALi::vector<Node>::iterator Self_iterator;
#endif // MSVC6
typedef typename Traits::Point_2 Point_2;
// constructor
template<class ForwardIterator>
Rotation_tree_2(ForwardIterator first, ForwardIterator beyond)
{
for (ForwardIterator it = first; it != beyond; it++)
push_back(*it);
std::sort(begin(), end(), swap_1(Traits().less_xy_2_object()));
std::unique(begin(), end());
// b is the point with the largest x coordinate
Node largest_x = front();
// push the point p_minus_infinity; the coordinates should never be used
push_back(Point_2( 1, -1));
// push the point p_infinity; the coordinates should never be used
push_back(Point_2(1, 1));
_p_inf = end(); // record the iterators to these extreme points
_p_inf--;
_p_minus_inf = _p_inf;
_p_minus_inf--;
Self_iterator child;
// make p_minus_inf a child of p_inf
set_rightmost_child(_p_minus_inf, _p_inf);
child = begin(); // now points to p_0
while (child != _p_minus_inf) // make all points children of p_minus_inf
{
set_rightmost_child(child, _p_minus_inf);
child++;
}
}
// the point that comes first in the right-to-left ordering is first
// in the ordering, after the auxilliary points p_minus_inf and p_inf
Self_iterator rightmost_point_ref()
{
return begin();
}
Self_iterator right_sibling(Self_iterator p)
{
if (!(*p).has_right_sibling()) return end();
return (*p).right_sibling();
}
Self_iterator left_sibling(Self_iterator p)
{
if (!(*p).has_left_sibling()) return end();
return (*p).left_sibling();
}
Self_iterator rightmost_child(Self_iterator p)
{
if (!(*p).has_children()) return end();
return (*p).rightmost_child();
}
Self_iterator parent(Self_iterator p)
{
if (!(*p).has_parent()) return end();
return (*p).parent();
}
bool parent_is_p_infinity(Self_iterator p)
{
return parent(p) == _p_inf;
}
bool parent_is_p_minus_infinity(Self_iterator p)
{
return parent(p) == _p_minus_inf;
}
// makes *p the parent of *q
void set_parent (Self_iterator p, Self_iterator q)
{
CGAL_assertion(q != end());
if (p == end())
(*q).clear_parent();
else
(*q).set_parent(p);
}
// makes *p the rightmost child of *q
void set_rightmost_child(Self_iterator p, Self_iterator q);
// makes *p the left sibling of *q
void set_left_sibling(Self_iterator p, Self_iterator q);
// makes *p the right sibling of *q
void set_right_sibling(Self_iterator p, Self_iterator q);
// NOTE: this function does not actually remove the node p from the
// list; it only reorganizes the pointers so this node is not
// in the tree structure anymore
void erase(Self_iterator p);
private:
Self_iterator _p_inf;
Self_iterator _p_minus_inf;
};
}
#ifdef CGAL_CFG_NO_AUTOMATIC_TEMPLATE_INCLUSION
#include <CGAL/Rotation_tree_2.C>
#endif // CGAL_CFG_NO_AUTOMATIC_TEMPLATE_INCLUSION
#endif // CGAL_ROTATION_TREE_H