cgal/Packages/Spatial_searching/include/CGAL/Kd_tree_rectangle.h

310 lines
8.0 KiB
C++

// ======================================================================
// Copyright (c) 2002 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Kd_tree_rectangle.h
// package : ASPAS
// revision : 2.4
// revision_date : 2003/02/01
// authors : Hans Tangelder (<hanst@cs.uu.nl>)
// maintainer : Hans Tangelder (<hanst@cs.uu.nl>)
// coordinator : Utrecht University
//
// ======================================================================
#ifndef CGAL_KD_TREE_RECTANGLE_H
#define CGAL_KD_TREE_RECTANGLE_H
#include <functional>
#include <algorithm>
#include <new>
#include <cassert>
#include <CGAL/Iso_rectangle_d.h>
namespace CGAL {
template <class Point, class T>
struct set_bounds : public std::unary_function<Point&, void> {
int dim;
T *lower;
T *upper;
set_bounds(int d, T *l, T *u) : dim(d), lower(l), upper(u) {}
void operator() (Point& p) {
T h;
for (int i = 0; i < dim; ++i) {
h=p[i];
if (h < lower[i]) lower[i] = h;
if (h > upper[i]) upper[i] = h;
}
}
};
template <class P, class T>
struct set_bounds_from_pointer : public std::unary_function<P, void> {
int dim;
T *lower;
T *upper;
set_bounds_from_pointer(int d, T *l, T *u) :
dim(d), lower(l), upper(u) {}
void operator() (P p) {
T h;
for (int i = 0; i < dim; ++i) {
h=(*p)[i];
if (h < lower[i]) lower[i] = h;
if (h > upper[i]) upper[i] = h;
}
}
};
template <class T> class Kd_tree_rectangle {
public:
typedef T NT;
private:
int dim;
T *lower_;
T *upper_;
int max_span_coord_;
public:
inline void set_upper_bound(const int i, const NT& x) {
// assert(i >= 0 && i < dim);
// assert(x >= lower_[i]);
upper_[i] = x;
set_max_span();
}
inline void set_lower_bound(const int i, const NT& x) {
// assert(i >= 0 && i < dim);
// assert(x <= upper_[i]);
lower_[i] = x;
set_max_span();
}
inline void set_max_span() {
NT span = upper_[0]-lower_[0];
max_span_coord_ = 0;
for (int i = 1; i < dim; ++i) {
NT tmp = upper_[i] - lower_[i];
if (span < tmp) {
span = tmp;
max_span_coord_ = i;
}
}
}
Kd_tree_rectangle(const int d) :
dim(d), lower_(new NT[d]), upper_(new NT[d])
{
std::fill(lower_, lower_ + dim, 0);
std::fill(upper_, upper_ + dim, 0);
set_max_span();
}
Kd_tree_rectangle() : dim(0), lower_(0), upper_(0) {}
template <class Iter>
Kd_tree_rectangle(const int d, Iter begin_lower, Iter end_lower,
Iter begin_upper, Iter end_upper)
: dim(d) {
lower_ = new NT[d];
upper_ = new NT[d];
std::copy(begin_lower, end_lower, lower_);
std::copy(begin_upper, end_upper, upper_);
set_max_span();
}
explicit Kd_tree_rectangle(const Kd_tree_rectangle<NT>& r) : dim(r.dim),
lower_(new NT[dim]), upper_(new NT[dim]) {
std::copy(r.lower_, r.lower_+dim, lower_);
std::copy(r.upper_, r.upper_+dim, upper_);
set_max_span();
}
template <class PointIter>
Kd_tree_rectangle(const int d, PointIter begin, PointIter end)
: dim(d), lower_(new NT[d]), upper_(new NT[d]) {
// initialize with values of first point
for (int i=0; i < dim; ++i)
{
lower_[i]=(*begin)[i]; upper_[i]=lower_[i];
}
begin++;
typedef typename std::iterator_traits<PointIter>::value_type P;
std::for_each(begin, end, set_bounds<P,T>(dim, lower_, upper_));
set_max_span();
}
template <class PointPointerIter>
void update_from_point_pointers(PointPointerIter begin,
PointPointerIter end, bool empty) {
if (empty) { // no points
for (int i=0; i < dim; ++i)
{
lower_[i]= NT(1); upper_[i]= NT(-1);
}
} else {
// initialize with values of first point
for (int i=0; i < dim; ++i)
{
lower_[i]= (*(*begin))[i]; upper_[i]=lower_[i];
}
begin++;
typedef typename
std::iterator_traits<PointPointerIter>::value_type P;
std::for_each(begin, end,
set_bounds_from_pointer<P,T>(dim, lower_, upper_));
}
set_max_span();
}
inline int max_span_coord() const { return max_span_coord_; }
inline NT max_span() const {
return upper_[max_span_coord_] - lower_[max_span_coord_];
}
inline NT min_coord(int i) const {
return lower_[i];
}
inline NT max_coord(int i) const {
return upper_[i];
}
std::ostream& print(std::ostream& s) {
s << "Rectangle dimension = " << dim;
s << "\n lower: ";
for (int i=0; i < dim; ++i)
s << lower_[i] << " ";
// std::copy(lower_, lower_ + dim,
// std::ostream_iterator<NT>(s," "));
s << "\n upper: ";
for (int j=0; j < dim; ++j)
s << upper_[j] << " ";
// std::copy(upper_, upper_ + dim,
// std::ostream_iterator<NT>(s," "));
s << "\n maximum span " << max_span() <<
" at coordinate " << max_span_coord() << std::endl;
return s;
}
// Splits rectangle by modifying itself to lower half
// and returns upper half
Kd_tree_rectangle* split(int d, NT value) {
// assert(d >= 0 && d < dim);
// assert(lower_[d] <= value && value <= upper_[d]);
Kd_tree_rectangle* r = new Kd_tree_rectangle(*this);
upper_[d]=value;
r->lower_[d]=value;
return r;
}
~Kd_tree_rectangle() {
if (dim) {
if (lower_) delete [] lower_;
if (upper_) delete [] upper_;
}
}
int dimension() const {return dim;}
/*
template <class Point> bool has_on_bounded_side(const Point& p)
{
NT h;
for (int i = 0; i < dimension(); ++i) {
h=p[i];
if ( (h < min_coord(i)) || (h > max_coord(i)) ) return 0;
}
return 1;
} */
// checks whether an epsilon eroded iso rectangle r
// intersects the kd_tree rectangle
template <class Rectangle>
inline bool intersects_eroded_rectangle(
const Rectangle& r, const NT eps)
{
for (int i = 0; i < dim; ++i) {
if ( (r.max_coord(i)-eps < lower_[i])
|| (r.min_coord(i)+eps > upper_[i]) ) return 0;
}
return 1;
}
// checks whether an epsilon dilated iso rectangle r
// encloses the kd_tree rectangle
template <class Rectangle>
inline bool is_enclosed_by_dilated_rectangle(
const Rectangle& r, const NT eps)
{
for (int i = 0; i < dim; ++i) {
if ( (r.max_coord(i)+eps < upper_[i])
|| (r.min_coord(i)-eps > lower_[i]) ) return 0;
}
return 1;
}
Kd_tree_rectangle<NT>& operator= (const Kd_tree_rectangle<NT>& r) {
if (this != &r) {
std::copy(r.lower_, r.lower_+dim, lower_);
std::copy(r.upper_, r.upper_+dim, upper_);
set_max_span();
}
return *this;
}
template <class Point>
bool min_squared_Euclidean_distance_to_point_is_at_most(
const Point& p, const NT d) {
NT distance = NT(0);
for (int i = 0; (i < dim) && (distance <= d); ++i) {
if (p[i] < lower_[i])
distance += (lower_[i]-p[i])*(lower_[i]-p[i]);
if (p[i] > upper_[i])
distance += (p[i]-upper_[i])*(p[i]-upper_[i]);
}
return (distance <= d);
}
template <class Point>
bool max_squared_Euclidean_distance_to_point_is_at_most
(const Point& p, const NT d) {
NT distance=NT(0);
for (int i = 0; (i < dim) && (distance <= d) ; ++i) {
if (p[i] <= (lower_[i]+upper_[i])/NT(2))
distance += (upper_[i]-p[i])*(upper_[i]-p[i]);
else
distance += (p[i]-lower_[i])*(p[i]-lower_[i]);
}
return (distance <= d);
}
}; // of class Kd_tree_rectangle
template <class NT>
std::ostream& operator<< (std::ostream& s, Kd_tree_rectangle<NT>& r) {
return r.print(s);
}
} // namespace CGAL
#endif // CGAL_KD_TREE_RECTANGLE_H