cgal/AABB_tree/test/AABB_tree/AABB_test_util.h

842 lines
25 KiB
C++

// Copyright (c) 2009 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Pierre Alliez, Stephane Tayeb, Camille Wormser
//
//******************************************************************************
// File Description :
//
//******************************************************************************
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Cartesian.h>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>
#include <CGAL/AABB_halfedge_graph_segment_primitive.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/Timer.h>
#include <CGAL/disable_warnings.h>
#include <CGAL/AABB_tree/internal/Primitive_helper.h>
#include <CGAL/use.h>
#include <boost/mem_fn.hpp>
double random_in(const double a,
const double b)
{
double r = rand() / static_cast<double>(RAND_MAX);
return a + (b - a) * r;
}
template <class K>
typename K::Point_3 random_point_in(const CGAL::Bbox_3& bbox)
{
typedef typename K::FT FT;
FT x = (FT)random_in(bbox.xmin(),bbox.xmax());
FT y = (FT)random_in(bbox.ymin(),bbox.ymax());
FT z = (FT)random_in(bbox.zmin(),bbox.zmax());
return typename K::Point_3(x,y,z);
}
template <class K>
typename K::Vector_3 random_vector()
{
typedef typename K::FT FT;
FT x = (FT)random_in(0.0,1.0);
FT y = (FT)random_in(0.0,1.0);
FT z = (FT)random_in(0.0,1.0);
return typename K::Vector_3(x,y,z);
}
template <class Tree, class K>
void test_all_intersection_query_types(Tree& tree)
{
std::cout << "Test all query types" << std::endl;
typedef typename K::FT FT;
typedef typename K::Ray_3 Ray;
typedef typename K::Line_3 Line;
typedef typename K::Point_3 Point;
typedef typename K::Segment_3 Segment;
typedef typename Tree::Primitive Primitive;
Point p((FT)-0.5, (FT)-0.5, (FT)-0.5);
Point q((FT) 0.5, (FT) 0.5, (FT) 0.5);
Ray ray(p,q);
Line line(p,q);
Segment segment(p,q);
bool success = false;
// do_intersect
success = tree.do_intersect(ray);
success = tree.do_intersect(line);
success = tree.do_intersect(segment);
(void) success;
// number_of_intersected_primitives
tree.number_of_intersected_primitives(ray);
tree.number_of_intersected_primitives(line);
tree.number_of_intersected_primitives(segment);
// all_intersected_primitives
std::list<typename Primitive::Id> primitives;
tree.all_intersected_primitives(ray,std::back_inserter(primitives));
tree.all_intersected_primitives(line,std::back_inserter(primitives));
tree.all_intersected_primitives(segment,std::back_inserter(primitives));
// any_intersection
boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Ray>::Type > r = tree.any_intersection(ray);
boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Line>::Type > l = tree.any_intersection(line);
boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Segment>::Type > s = tree.any_intersection(segment);
// any_intersected_primitive
boost::optional<typename Primitive::Id> optional_primitive;
optional_primitive = tree.any_intersected_primitive(ray);
optional_primitive = tree.any_intersected_primitive(line);
optional_primitive = tree.any_intersected_primitive(segment);
// all_intersections
std::list< boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Ray>::Type > > intersections_r;
std::list< boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Line>::Type > > intersections_l;
std::list< boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Segment>::Type > > intersections_s;
tree.all_intersections(ray,std::back_inserter(intersections_r));
tree.all_intersections(line,std::back_inserter(intersections_l));
tree.all_intersections(segment,std::back_inserter(intersections_s));
}
template <class Tree, class K>
void test_all_distance_query_types(Tree& tree)
{
typedef typename K::FT FT;
// typedef typename K::Ray_3 Ray;
typedef typename K::Point_3 Point;
// typedef typename K::Vector_3 Vector;
// typedef typename Tree::Primitive Primitive;
typedef typename Tree::Point_and_primitive_id Point_and_primitive_id;
Point query = random_point_in<K>(tree.bbox());
Point_and_primitive_id hint = tree.any_reference_point_and_id();
FT sqd1 = tree.squared_distance(query);
FT sqd2 = tree.squared_distance(query,hint.first);
if(sqd1 != sqd2)
std::cout << "different distances with and without hint";
Point p1 = tree.closest_point(query);
Point p2 = tree.closest_point(query,hint.first);
if(p1 != p2)
std::cout << "Different closest points with and without hint (possible, in case there are more than one)";
Point_and_primitive_id pp1 = tree.closest_point_and_primitive(query);
Point_and_primitive_id pp2 = tree.closest_point_and_primitive(query,hint);
if(pp1.second != pp2.second)
std::cout << "Different closest primitives with and without hint (possible, in case there are more than one)";
}
template <class Tree, class K>
void test_distance_speed(Tree& tree,
const double duration)
{
// typedef typename K::FT FT;
// typedef typename K::Ray_3 Ray;
typedef typename K::Point_3 Point;
// typedef typename K::Vector_3 Vector;
CGAL::Timer timer;
timer.start();
unsigned int nb = 0;
while(timer.time() < duration)
{
// picks a random point in the tree bbox
Point query = random_point_in<K>(tree.bbox());
Point closest = tree.closest_point(query);
(void) closest;
nb++;
}
double speed = static_cast<double>(nb) / timer.time();
std::cout << speed << " distance queries/s" << std::endl;
timer.stop();
}
//-------------------------------------------------------
// Helpers
//-------------------------------------------------------
enum Primitive_type {
SEGMENT, TRIANGLE
};
/**
* Primitive_generator : designed to tell void test<K,Primitive>(const char* filename)
* some information about which primitive to use.
*
* Must define:
* type Primitive
* type iterator
* iterator begin(Polyhedron&)
* iterator end(Polyhedron&)
*
* begin & end are used to build the AABB_tree.
*/
template<Primitive_type Primitive, class K, class Polyhedron>
struct Primitive_generator {};
template<class K, class Polyhedron>
struct Primitive_generator<SEGMENT, K, Polyhedron>
{
typedef CGAL::AABB_halfedge_graph_segment_primitive<Polyhedron> Primitive;
typedef typename boost::graph_traits<Polyhedron>
::edge_iterator iterator;
iterator begin(Polyhedron& p) {
// test the availability of primitive constructor
Primitive foobar(*(edges(p).first), p);
CGAL_USE(foobar);
return CGAL::edges(p).first;
}
iterator end(Polyhedron& p) { return CGAL::edges(p).second; }
};
template<class K, class Polyhedron>
struct Primitive_generator<TRIANGLE, K, Polyhedron>
{
typedef CGAL::AABB_face_graph_triangle_primitive<Polyhedron> Primitive;
typedef typename boost::graph_traits<Polyhedron>::face_iterator iterator;
iterator begin(Polyhedron& p) {
// test the availability of primitive constructor
Primitive foobar(*(faces(p).first), p);
CGAL_USE(foobar);
return faces(p).first;
}
iterator end(Polyhedron& p) { return faces(p).second; }
};
/**
* Declaration only, implementation should be given in .cpp file
*/
template<class K, class Tree, class Polyhedron, Primitive_type Type>
void test_impl(Tree& tree, Polyhedron& p, const double duration);
/**
* Generic test method. Build AABB_tree and call test_impl()
*/
template <class K, Primitive_type Primitive>
void test(const char *filename,
const double duration)
{
typedef CGAL::Polyhedron_3<K> Polyhedron;
typedef Primitive_generator<Primitive,K,Polyhedron> Pr_generator;
typedef typename Pr_generator::Primitive Pr;
typedef CGAL::AABB_traits<K, Pr> Traits;
typedef CGAL::AABB_tree<Traits> Tree;
Polyhedron polyhedron;
std::ifstream ifs(filename);
ifs >> polyhedron;
// constructs AABB tree and internal search KD-tree with
// the points of the polyhedron
Tree tree(Pr_generator().begin(polyhedron),Pr_generator().end(polyhedron), polyhedron);
//tree.accelerate_distance_queries(polyhedron.points_begin(),polyhedron.points_end());
// call all tests
test_impl<K,Tree,Polyhedron,Primitive>(tree,polyhedron,duration);
}
/**
* Generic test_kernel method. call test<K> for various kernel K.
*/
template<Primitive_type Primitive>
void test_kernels(const char *filename,
const double duration)
{
std::cout << std::endl;
std::cout << "Polyhedron " << filename << std::endl;
std::cout << "============================" << std::endl;
std::cout << std::endl;
std::cout << "Simple cartesian float kernel" << std::endl;
test<CGAL::Simple_cartesian<float>,Primitive>(filename,duration);
std::cout << std::endl;
std::cout << "Cartesian float kernel" << std::endl;
test<CGAL::Cartesian<float>,Primitive>(filename,duration);
std::cout << std::endl;
std::cout << "Simple cartesian double kernel" << std::endl;
test<CGAL::Simple_cartesian<double>,Primitive>(filename,duration);
std::cout << std::endl;
std::cout << "Cartesian double kernel" << std::endl;
test<CGAL::Cartesian<double>,Primitive>(filename,duration);
std::cout << std::endl;
std::cout << "Epic kernel" << std::endl;
test<CGAL::Exact_predicates_inexact_constructions_kernel,Primitive>(filename,duration);
}
//-------------------------------------------------------
// Naive Implementations
//-------------------------------------------------------
/**
* Implements queries defined by AABB_tree class in naive way: iterate on
* the primitive.
*/
template<typename Polyhedron,
typename K,
Primitive_type Primitive >
class Naive_implementations
{
typedef Primitive_generator<Primitive,K,Polyhedron> Pr_generator;
typedef typename Pr_generator::Primitive Pr;
typedef CGAL::AABB_traits<K, Pr> Traits;
typedef typename Pr_generator::iterator Polyhedron_primitive_iterator;
typedef unsigned int size_type;
typedef typename Traits::Object_and_primitive_id Object_and_primitive_id;
typedef typename Pr::Id Primitive_id;
typedef typename Traits::FT FT;
typedef typename Traits::Point_3 Point;
typedef typename Traits::Point_and_primitive_id Point_and_primitive_id;
typedef boost::optional<Object_and_primitive_id> Intersection_result;
const Traits& m_traits;
public:
Naive_implementations(const Traits& traits):m_traits(traits){}
template<typename Query>
bool do_intersect(const Query& query, Polyhedron& p) const
{
Polyhedron_primitive_iterator it = Pr_generator().begin(p);
for ( ; it != Pr_generator().end(p) ; ++it )
{
if ( m_traits.do_intersect_object()(query, Pr(it,p) ) )
return true;
}
return false;
}
template<typename Query>
size_type number_of_intersected_primitives(const Query& query,
Polyhedron& p) const
{
size_type result = 0;
Polyhedron_primitive_iterator it = Pr_generator().begin(p);
for ( ; it != Pr_generator().end(p) ; ++it )
{
if ( m_traits.do_intersect_object()(query, Pr(it,p) ) )
++result;
}
return result;
}
template<typename Query, typename OutputIterator>
OutputIterator all_intersected_primitives(const Query& query,
Polyhedron& p,
OutputIterator out) const
{
Polyhedron_primitive_iterator it = Pr_generator().begin(p);
for ( ; it != Pr_generator().end(p) ; ++it )
{
if ( m_traits.do_intersect_object()(query, Pr(it,p) ) )
*out++ = Pr(it,p).id();
}
return out;
}
template<typename Query, typename OutputIterator>
OutputIterator all_intersections(const Query& query,
Polyhedron& p,
OutputIterator out) const
{
Polyhedron_primitive_iterator it = Pr_generator().begin(p);
for ( ; it != Pr_generator().end(p) ; ++it )
{
boost::optional< typename Traits::template Intersection_and_primitive_id<Query>::Type >
intersection = m_traits.intersection_object()(query, Pr(it,p));
if ( intersection )
*out++ = *intersection;
}
return out;
}
Point closest_point(const Point& query,
Polyhedron& p) const
{
Polyhedron_primitive_iterator it = Pr_generator().begin(p);
assert ( it != Pr_generator().end(p) );
// Get a point on the primitive
Point closest_point = CGAL::internal::Primitive_helper<Traits>::get_reference_point(Pr(it,p),m_traits);
for ( ; it != Pr_generator().end(p) ; ++it )
{
closest_point = m_traits.closest_point_object()(query, Pr(it,p), closest_point);
}
return closest_point;
}
Point_and_primitive_id closest_point_and_primitive(const Point& query,
Polyhedron& p) const
{
Polyhedron_primitive_iterator it = Pr_generator().begin(p);
assert ( it != Pr_generator().end(p) );
// Get a point on the primitive
Pr closest_primitive = Pr(it,p);
Point closest_point = CGAL::internal::Primitive_helper<Traits>::get_reference_point(closest_primitive,m_traits);
for ( ; it != Pr_generator().end(p) ; ++it )
{
Pr tmp_pr(it,p);
Point tmp_pt = m_traits.closest_point_object()(query, tmp_pr, closest_point);
if ( tmp_pt != closest_point )
{
closest_point = tmp_pt;
closest_primitive = tmp_pr;
}
}
return Point_and_primitive_id(closest_point,closest_primitive.id());
}
};
//-------------------------------------------------------
// Naive Tester
//-------------------------------------------------------
template <class Tree, class Polyhedron, class K, Primitive_type Type>
class Tree_vs_naive
{
typedef typename K::FT FT;
typedef typename K::Ray_3 Ray;
typedef typename K::Line_3 Line;
typedef typename K::Point_3 Point;
typedef typename K::Vector_3 Vector;
typedef typename K::Segment_3 Segment;
typedef typename Tree::Primitive Primitive;
typedef typename Tree::Point_and_primitive_id Point_and_primitive_id;
typedef typename Tree::Object_and_primitive_id Object_and_primitive_id;
typedef typename Tree::size_type size_type;
typedef Naive_implementations<Polyhedron, K, Type> Naive_implementation;
public:
Tree_vs_naive(Tree& tree, Polyhedron& p)
: m_tree(tree)
, m_polyhedron(p)
, m_naive(m_tree.traits())
, m_naive_time(0)
, m_tree_time(0) {}
void test_all_intersection_methods(double duration) const
{
m_naive_time = 0;
m_tree_time = 0;
test_do_intersect(duration);
test_number_of_intersected_primitives(duration);
test_intersected_primitives(duration);
test_intersections(duration);
std::cerr << "\tNaive test time: " << m_naive_time*1000 << "ms" << std::endl;
std::cerr << "\tTree test time: " << m_tree_time*1000 << "ms" << std::endl;
}
void test_all_distance_methods(double duration) const
{
m_naive_time = 0;
m_tree_time = 0;
test_closest_point(duration);
test_closest_point_and_primitive(duration);
std::cerr << "\tNaive test time: " << m_naive_time*1000 << "ms" << std::endl;
std::cerr << "\tTree test time: " << m_tree_time*1000 << "ms" << std::endl;
}
void test_do_intersect(double duration) const
{
loop(duration, Do_intersect());
}
void test_number_of_intersected_primitives(double duration) const
{
loop(duration, Number_of_intersected_primitives());
}
void test_intersected_primitives(double duration) const
{
loop(duration, Intersected_primitives());
}
void test_intersections(double duration) const
{
loop(duration, Intersections());
}
void test_closest_point(double duration) const
{
loop_distance(duration, Closest_point());
}
void test_closest_point_and_primitive(double duration) const
{
loop_distance(duration, Closest_point_and_primitive());
}
private:
template<typename Test>
void loop(double duration,
const Test& test) const
{
CGAL::Timer timer;
timer.start();
int nb_test = 0;
while ( timer.time() < duration )
{
Point a = random_point_in<K>(m_tree.bbox());
Point b = random_point_in<K>(m_tree.bbox());
Segment segment(a,b);
Ray ray(a,b);
Line line(a,b);
test(segment, m_polyhedron, m_tree, m_naive);
test(ray, m_polyhedron, m_tree, m_naive);
test(line, m_polyhedron, m_tree, m_naive);
++nb_test;
}
timer.stop();
m_naive_time += test.naive_timer.time();
m_tree_time += test.tree_timer.time();
}
template<typename Test>
void loop_distance(double duration,
const Test& test) const
{
CGAL::Timer timer;
timer.start();
while ( timer.time() < duration )
{
Point a = random_point_in<K>(m_tree.bbox());
test(a, m_polyhedron, m_tree, m_naive);
}
timer.stop();
m_naive_time += test.naive_timer.time();
m_tree_time += test.tree_timer.time();
}
private:
/**
* Tests do_intersect
*/
struct Do_intersect
{
template<typename Query>
void
operator()(const Query& query,
Polyhedron& p,
Tree& tree,
const Naive_implementation& naive) const
{
naive_timer.start();
bool result_naive = naive.do_intersect(query, p);
naive_timer.stop();
tree_timer.start();
bool result_tree = tree.do_intersect(query);
tree_timer.stop();
// Check
assert ( result_naive == result_tree );
}
mutable CGAL::Timer naive_timer;
mutable CGAL::Timer tree_timer;
};
/**
* Tests number_of_intersected_primitives
*/
struct Number_of_intersected_primitives
{
template<typename Query>
void
operator()(const Query& query,
Polyhedron& p,
Tree& tree,
const Naive_implementation& naive) const
{
naive_timer.start();
size_type number_naive = naive.number_of_intersected_primitives(query, p);
naive_timer.stop();
tree_timer.start();
size_type number_tree = tree.number_of_intersected_primitives(query);
tree_timer.stop();
// Check
assert ( number_naive == number_tree );
}
mutable CGAL::Timer naive_timer;
mutable CGAL::Timer tree_timer;
};
/**
* Tests all_intersected_primitives and any_intersected_primitives
*/
struct Intersected_primitives
{
template<typename Query>
void
operator()(const Query& query,
Polyhedron& p,
Tree& tree,
const Naive_implementation& naive) const
{
typedef std::vector<typename Primitive::Id> Id_vector;
Id_vector primitives_naive;
naive_timer.start();
naive.all_intersected_primitives(query, p, std::back_inserter(primitives_naive));
naive_timer.stop();
Id_vector primitives_tree;
tree_timer.start();
tree.all_intersected_primitives(query, std::back_inserter(primitives_tree));
tree_timer.stop();
// Check: we don't know elements order...
for ( typename Id_vector::iterator it = primitives_naive.begin() ;
it != primitives_naive.end() ;
++it )
{
assert( std::find(primitives_tree.begin(), primitives_tree.end(), *it)
!= primitives_tree.end() );
}
// any_intersected_primitive test (do not count time here)
typedef boost::optional<typename Primitive::Id> Any_primitive;
Any_primitive primitive = tree.any_intersected_primitive(query);
// Check: verify we do get the result by naive method
if ( primitive )
{
assert( std::find(primitives_naive.begin(),
primitives_naive.end(),
*primitive)
!= primitives_naive.end());
}
else if ( primitives_naive.size() != 0 )
assert(false);
}
mutable CGAL::Timer naive_timer;
mutable CGAL::Timer tree_timer;
};
/**
* Tests all_intersections and any_intersection
*/
struct Intersections
{
template<typename Query>
void
operator()(const Query& query,
Polyhedron& p,
Tree& tree,
const Naive_implementation& naive) const
{
typedef
typename Tree::AABB_traits::template Intersection_and_primitive_id<Query>::Type
Obj_type;
typedef
std::vector<Obj_type>
Obj_Id_vector;
Obj_Id_vector intersections_naive;
naive_timer.start();
naive.all_intersections(query, p, std::back_inserter(intersections_naive));
naive_timer.stop();
Obj_Id_vector intersections_tree;
tree_timer.start();
tree.all_intersections(query, std::back_inserter(intersections_tree));
tree_timer.stop();
// Check: we don't know elements order...
// Test equality of vectors on ids only
typedef std::vector<typename Primitive::Id> Id_vector;
Id_vector intersections_naive_id;
std::transform(intersections_naive.begin(),
intersections_naive.end(),
std::back_inserter(intersections_naive_id),
boost::mem_fn(&Obj_type::second)
);
for ( typename Obj_Id_vector::iterator it = intersections_tree.begin() ;
it != intersections_tree.end() ;
++it )
{
assert( std::find(intersections_naive_id.begin(),
intersections_naive_id.end(),
it->second)
!= intersections_naive_id.end() );
}
// Any intersection test (do not count time here)
boost::optional< typename Tree::AABB_traits::template Intersection_and_primitive_id<Query>::Type >
intersection = tree.any_intersection(query);
// Check: verify we do get the result by naive method
if ( intersection )
{
assert( std::find(intersections_naive_id.begin(),
intersections_naive_id.end(),
intersection->second)
!= intersections_naive_id.end());
}
else if ( intersections_naive.size() != 0 )
assert(false);
}
static typename Primitive::Id primitive_id_o(const Object_and_primitive_id& o)
{
return o.second;
}
mutable CGAL::Timer naive_timer;
mutable CGAL::Timer tree_timer;
};
struct Closest_point
{
void operator()(const Point& query,
Polyhedron& p,
Tree& tree,
const Naive_implementation& naive) const
{
naive_timer.start();
Point point_naive = naive.closest_point(query,p);
naive_timer.stop();
tree_timer.start();
Point point_tree = tree.closest_point(query);
tree_timer.stop();
FT dist_naive = CGAL::squared_distance(query, point_naive);
FT dist_tree = CGAL::squared_distance(query, point_tree);
const FT epsilon = FT(1e-7);
if (CGAL::abs(dist_naive - dist_tree) > epsilon) {
std::cerr.precision(17);
std::cerr << "dist_tree: " << dist_tree
<< "\ndist_naive: " << dist_naive
<< "\ndifference: " << (dist_naive - dist_tree) << std::endl;
}
assert( (dist_naive - dist_tree) <= epsilon );
assert( (dist_naive - dist_tree) >= (-1. * epsilon) );
}
mutable CGAL::Timer naive_timer;
mutable CGAL::Timer tree_timer;
};
struct Closest_point_and_primitive
{
void operator()(const Point& query,
Polyhedron& p,
Tree& tree,
const Naive_implementation& naive) const
{
naive_timer.start();
Point_and_primitive_id point_naive = naive.closest_point_and_primitive(query,p);
naive_timer.stop();
tree_timer.start();
Point_and_primitive_id point_tree = tree.closest_point_and_primitive(query);
tree_timer.stop();
// Laurent Rineau, 2014/02/05: With a non exact kernel, there is no
// reason that the points are equal!
// if ( point_naive.second == point_tree.second )
// {
// // Points should be the same
// assert(point_naive.first == point_tree.first);
// }
// else
{
// Compare distance
FT dist_naive = CGAL::squared_distance(query, point_naive.first);
FT dist_tree = CGAL::squared_distance(query, point_tree.first);
const FT epsilon = FT(1e-7);
if (CGAL::abs(dist_naive - dist_tree) > epsilon) {
std::cerr.precision(17);
std::cerr << "dist_tree: " << dist_tree
<< "\ndist_naive: " << dist_naive
<< "\ndifference: " << (dist_naive - dist_tree) << std::endl;
}
assert( (dist_naive - dist_tree) <= epsilon );
assert( (dist_naive - dist_tree) >= (-1. * epsilon) );
}
}
mutable CGAL::Timer naive_timer;
mutable CGAL::Timer tree_timer;
};
private:
Tree& m_tree;
Polyhedron& m_polyhedron;
Naive_implementation m_naive;
mutable double m_naive_time;
mutable double m_tree_time;
};
#include <CGAL/enable_warnings.h>