cgal/Polynomial/doc/Polynomial/Concepts/PolynomialTraits_d--Scale.h

67 lines
1.2 KiB
C++

/*!
\ingroup PkgPolynomialConcepts
\cgalConcept
Given a constant \f$ c\f$ this `AdaptableBinaryFunction` scales a
`PolynomialTraits_d::Polynomial_d` \f$ p\f$ with respect to one variable, that is,
it computes \f$ p(c\cdot x)\f$.
Note that this functor operates on the polynomial in the univariate view, that is,
the polynomial is considered as a univariate polynomial in one specific variable.
\cgalRefines `AdaptableBinaryFunction`
\cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible`
\sa `Polynomial_d`
\sa `PolynomialTraits_d`
*/
class PolynomialTraits_d::Scale {
public:
/// \name Types
/// @{
/*!
*/
typedef PolynomialTraits_d::Polynomial_d result_type;
/*!
*/
typedef PolynomialTraits_d::Polynomial_d first_argument_type;
/*!
*/
typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;
/// @}
/// \name Operations
/// @{
/*!
Returns \f$ p(c\cdot x)\f$, with respect to the outermost variable.
*/
result_type operator()(first_argument_type p,
second_argument_type c);
/*!
Same as first operator but for variable \f$ x_i\f$.
\pre \f$ 0 \leq i < d\f$.
*/
result_type operator()(first_argument_type p,
second_argument_type c,
int i);
/// @}
}; /* end PolynomialTraits_d::Scale */