cgal/Stream_support/include/CGAL/IO/PLY/PLY_reader.h

805 lines
25 KiB
C++

// Copyright (c) 2017 GeometryFactory
//
// This file is part of CGAL (www.cgal.org);
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Simon Giraudot
#ifndef CGAL_IO_PLY_PLY_READER_H
#define CGAL_IO_PLY_PLY_READER_H
#include <CGAL/Container_helper.h>
#include <CGAL/IO/io.h>
#include <CGAL/type_traits/is_iterator.h>
#include <CGAL/Kernel_traits.h>
#include <CGAL/property_map.h>
#include <boost/cstdint.hpp>
#include <boost/range/value_type.hpp>
#include <iostream>
#include <sstream>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#define TRY_TO_GENERATE_PROPERTY(STD_TYPE, T_TYPE, TYPE) \
if(type == STD_TYPE || type == T_TYPE) \
m_elements.back().add_property(new PLY_read_typed_number< TYPE >(name, format))
#define TRY_TO_GENERATE_SIZED_LIST_PROPERTY(STD_SIZE_TYPE, T_SIZE_TYPE, SIZE_TYPE, STD_INDEX_TYPE, T_INDEX_TYPE, INDEX_TYPE) \
if((size_type == STD_SIZE_TYPE || size_type == T_SIZE_TYPE) && \
(index_type == STD_INDEX_TYPE || index_type == T_INDEX_TYPE)) \
m_elements.back().add_property(new PLY_read_typed_list_with_typed_size< SIZE_TYPE , INDEX_TYPE >(name, format))
#define TRY_TO_GENERATE_LIST_PROPERTY(STD_INDEX_TYPE, T_INDEX_TYPE, INDEX_TYPE) \
TRY_TO_GENERATE_SIZED_LIST_PROPERTY("uchar", "uint8", boost::uint8_t, STD_INDEX_TYPE, T_INDEX_TYPE, INDEX_TYPE); \
else TRY_TO_GENERATE_SIZED_LIST_PROPERTY("char", "int8", boost::int8_t, STD_INDEX_TYPE, T_INDEX_TYPE, INDEX_TYPE); \
else TRY_TO_GENERATE_SIZED_LIST_PROPERTY("ushort", "uint16", boost::uint16_t, STD_INDEX_TYPE, T_INDEX_TYPE, INDEX_TYPE); \
else TRY_TO_GENERATE_SIZED_LIST_PROPERTY("short", "int16", boost::int16_t, STD_INDEX_TYPE, T_INDEX_TYPE, INDEX_TYPE); \
else TRY_TO_GENERATE_SIZED_LIST_PROPERTY("uint", "uint32", boost::uint32_t, STD_INDEX_TYPE, T_INDEX_TYPE, INDEX_TYPE); \
else TRY_TO_GENERATE_SIZED_LIST_PROPERTY("int", "int32", boost::int32_t, STD_INDEX_TYPE, T_INDEX_TYPE, INDEX_TYPE)
namespace CGAL {
namespace IO {
/// \cond SKIP_IN_MANUAL
// PLY types:
// name type number of bytes
// ---------------------------------------
// char character 1
// uchar unsigned character 1
// short short integer 2
// ushort unsigned short integer 2
// int integer 4
// uint unsigned integer 4
// float single-precision float 4
// double double-precision float 8
template <typename T>
struct PLY_property
{
typedef T type;
const char* name;
PLY_property(const char* name) : name(name) { }
};
// Use a double property for all kernels...
template <typename FT> struct Convert_FT { typedef double type; };
// ...except if kernel uses type float
template <> struct Convert_FT<float> { typedef float type; };
template <typename PointOrVectorMap>
struct Get_FT_from_map
{
typedef typename Convert_FT<typename Kernel_traits<
typename boost::property_traits<
PointOrVectorMap>::value_type>::Kernel::FT>::type type;
};
template <typename PointMap>
std::tuple<PointMap,
typename Kernel_traits<typename PointMap::value_type>::Kernel::Construct_point_3,
PLY_property<typename Get_FT_from_map<PointMap>::type>,
PLY_property<typename Get_FT_from_map<PointMap>::type>,
PLY_property<typename Get_FT_from_map<PointMap>::type> >
make_ply_point_reader(PointMap point_map)
{
return std::make_tuple(point_map, typename Kernel_traits<typename PointMap::value_type>::Kernel::Construct_point_3(),
PLY_property<typename Get_FT_from_map<PointMap>::type>("x"),
PLY_property<typename Get_FT_from_map<PointMap>::type>("y"),
PLY_property<typename Get_FT_from_map<PointMap>::type>("z"));
}
template <typename VectorMap>
std::tuple<VectorMap,
typename Kernel_traits<typename VectorMap::value_type>::Kernel::Construct_vector_3,
PLY_property<typename Get_FT_from_map<VectorMap>::type>,
PLY_property<typename Get_FT_from_map<VectorMap>::type>,
PLY_property<typename Get_FT_from_map<VectorMap>::type> >
make_ply_normal_reader(VectorMap normal_map)
{
return std::make_tuple(normal_map, typename Kernel_traits<typename VectorMap::value_type>::Kernel::Construct_vector_3(),
PLY_property<typename Get_FT_from_map<VectorMap>::type>("nx"),
PLY_property<typename Get_FT_from_map<VectorMap>::type>("ny"),
PLY_property<typename Get_FT_from_map<VectorMap>::type>("nz"));
}
template <typename PointMap>
std::tuple<PointMap,
PLY_property<typename Get_FT_from_map<PointMap>::type>,
PLY_property<typename Get_FT_from_map<PointMap>::type>,
PLY_property<typename Get_FT_from_map<PointMap>::type> >
make_ply_point_writer(PointMap point_map)
{
return std::make_tuple(point_map,
PLY_property<typename Get_FT_from_map<PointMap>::type>("x"),
PLY_property<typename Get_FT_from_map<PointMap>::type>("y"),
PLY_property<typename Get_FT_from_map<PointMap>::type>("z"));
}
template <typename VectorMap>
std::tuple<VectorMap,
PLY_property<typename Get_FT_from_map<VectorMap>::type>,
PLY_property<typename Get_FT_from_map<VectorMap>::type>,
PLY_property<typename Get_FT_from_map<VectorMap>::type> >
make_ply_normal_writer(VectorMap normal_map)
{
return std::make_tuple(normal_map,
PLY_property<typename Get_FT_from_map<VectorMap>::type>("nx"),
PLY_property<typename Get_FT_from_map<VectorMap>::type>("ny"),
PLY_property<typename Get_FT_from_map<VectorMap>::type>("nz"));
}
namespace internal {
class PLY_read_number
{
protected:
std::string m_name;
std::size_t m_format;
public:
PLY_read_number(std::string name, std::size_t format)
: m_name(name), m_format(format) { }
virtual ~PLY_read_number() { }
const std::string& name() const { return m_name; }
virtual void get(std::istream& stream) const = 0;
// The two following functions prevent the stream to only extract
// ONE character (= what the types char imply) by requiring
// explicitely an integer object when reading the stream
void read_ascii(std::istream& stream, char& c) const
{
short s;
if(stream >> s)
c = static_cast<char>(s);
else
{
c = 0;
stream.clear(std::ios::badbit);
}
}
void read_ascii(std::istream& stream, signed char& c) const
{
short s;
if(stream >> s)
c = static_cast<signed char>(s);
else
{
c = 0;
stream.clear(std::ios::badbit);
}
}
void read_ascii(std::istream& stream, unsigned char& c) const
{
unsigned short s;
if(stream >> s)
c = static_cast<unsigned char>(s);
else
{
c = 0;
stream.clear(std::ios::badbit);
}
}
void read_ascii(std::istream& stream, float& t) const
{
if(!(stream >> IO::iformat(t)))
stream.clear(std::ios::badbit);
}
void read_ascii(std::istream& stream, double& t) const
{
if(!(stream >> iformat(t)))
stream.clear(std::ios::badbit);
}
// Default template when Type is not a char type
template <typename Type>
void read_ascii(std::istream& stream, Type& t) const
{
if(!(stream >> t))
stream.clear(std::ios::badbit);
}
template <typename Type>
Type read(std::istream& stream) const
{
if(m_format == 0) // ASCII
{
Type t;
read_ascii(stream, t);
return t;
}
else // Binary (2 = little endian)
{
union
{
char uChar[sizeof(Type)];
Type type;
} buffer;
std::size_t size = sizeof(Type);
stream.read(buffer.uChar, size);
if(m_format == 2) // Big endian
{
for(std::size_t i = 0; i < size / 2; ++ i)
{
unsigned char tmp = buffer.uChar[i];
buffer.uChar[i] = buffer.uChar[size - 1 - i];
buffer.uChar[size - 1 - i] = tmp;
}
}
return buffer.type;
}
return Type();
}
};
template <typename Type>
class PLY_read_typed_number : public PLY_read_number
{
mutable Type m_buffer;
public:
PLY_read_typed_number(std::string name, std::size_t format)
: PLY_read_number(name, format)
{ }
void get(std::istream& stream) const { m_buffer =(this->read<Type>(stream)); }
const Type& buffer() const { return m_buffer; }
};
template <typename Type>
class PLY_read_typed_list
: public PLY_read_number
{
protected:
mutable std::vector<Type> m_buffer;
public:
PLY_read_typed_list(std::string name, std::size_t format)
: PLY_read_number(name, format)
{ }
virtual void get(std::istream& stream) const = 0;
const std::vector<Type>& buffer() const { return m_buffer; }
};
template <typename SizeType, typename IndexType>
class PLY_read_typed_list_with_typed_size
: public PLY_read_typed_list<IndexType>
{
public:
PLY_read_typed_list_with_typed_size(std::string name, std::size_t format)
: PLY_read_typed_list<IndexType>(name, format)
{ }
void get(std::istream& stream) const
{
std::size_t size = static_cast<std::size_t>(this->template read<SizeType>(stream));
this->m_buffer.resize(size);
for(std::size_t i = 0; i < size; ++ i)
this->m_buffer[i] = this->template read<IndexType>(stream);
}
};
class PLY_element
{
std::string m_name;
std::size_t m_number;
std::vector<PLY_read_number*> m_properties;
public:
PLY_element(const std::string& name, std::size_t number)
: m_name(name), m_number(number)
{ }
PLY_element(const PLY_element& other)
: m_name(other.m_name), m_number(other.m_number), m_properties(other.m_properties)
{
const_cast<PLY_element&>(other).m_properties.clear();
}
PLY_element& operator=(const PLY_element& other)
{
m_name = other.m_name;
m_number = other.m_number;
m_properties = other.m_properties;
const_cast<PLY_element&>(other).m_properties.clear();
return *this;
}
~PLY_element()
{
for(std::size_t i = 0; i < m_properties.size(); ++ i)
delete m_properties[i];
}
const std::string& name() const { return m_name; }
std::size_t number_of_items() const { return m_number; }
std::size_t number_of_properties() const { return m_properties.size(); }
PLY_read_number* property(std::size_t idx) { return m_properties[idx]; }
void add_property(PLY_read_number* read_number)
{
m_properties.push_back(read_number);
}
template <typename Type>
bool has_property(const char* tag)
{
return has_property(tag, Type());
}
template <typename Type>
bool has_property(const char* tag, const std::vector<Type>&)
{
for(std::size_t i = 0; i < number_of_properties(); ++ i)
if(m_properties[i]->name() == tag)
return (dynamic_cast<PLY_read_typed_list<Type>*>(m_properties[i]) != nullptr);
return false;
}
template <typename Type>
bool has_property(const char* tag, Type)
{
for(std::size_t i = 0; i < number_of_properties(); ++ i)
if(m_properties[i]->name() == tag)
return (dynamic_cast<PLY_read_typed_number<Type>*>(m_properties[i]) != nullptr);
return false;
}
bool has_property(const char* tag, double)
{
for(std::size_t i = 0; i < number_of_properties(); ++ i)
if(m_properties[i]->name() == tag)
return (dynamic_cast<PLY_read_typed_number<double>*>(m_properties[i]) != nullptr
|| dynamic_cast<PLY_read_typed_number<float>*>(m_properties[i]) != nullptr);
return false;
}
template <typename Type>
void assign(Type& t, const char* tag)
{
for(std::size_t i = 0; i < number_of_properties(); ++ i)
if(m_properties[i]->name() == tag)
{
PLY_read_typed_number<Type>*
property = dynamic_cast<PLY_read_typed_number<Type>*>(m_properties[i]);
CGAL_assertion(property != nullptr);
t = property->buffer();
return;
}
t = {};
}
template <typename Type>
void assign(std::vector<Type>& t, const char* tag)
{
for(std::size_t i = 0; i < number_of_properties(); ++ i)
if(m_properties[i]->name() == tag)
{
PLY_read_typed_list<Type>*
property = dynamic_cast<PLY_read_typed_list<Type>*>(m_properties[i]);
CGAL_assertion(property != nullptr);
t = property->buffer();
return;
}
t = {};
}
void assign(double& t, const char* tag)
{
for(std::size_t i = 0; i < number_of_properties(); ++ i)
if(m_properties[i]->name() == tag)
{
PLY_read_typed_number<double>*
property_double = dynamic_cast<PLY_read_typed_number<double>*>(m_properties[i]);
if(property_double == nullptr)
{
PLY_read_typed_number<float>*
property_float = dynamic_cast<PLY_read_typed_number<float>*>(m_properties[i]);
CGAL_assertion(property_float != nullptr);
t = property_float->buffer();
}
else
t = property_double->buffer();
return;
}
t = {};
}
};
class PLY_reader
{
std::vector<PLY_element> m_elements;
std::string m_comments;
bool m_verbose;
public:
PLY_reader(bool verbose) : m_verbose(verbose) { }
std::size_t number_of_elements() const { return m_elements.size(); }
PLY_element& element(std::size_t idx)
{
return m_elements[idx];
}
const std::string& comments() const { return m_comments; }
template <typename Stream>
bool init(Stream& stream)
{
std::size_t lineNumber = 0; // current line number
enum Format { ASCII = 0, BINARY_LITTLE_ENDIAN = 1, BINARY_BIG_ENDIAN = 2};
Format format = ASCII;
std::string line;
std::istringstream iss;
while(getline(stream,line))
{
iss.clear();
iss.str(line);
++ lineNumber;
// Reads file signature on first line
if(lineNumber == 1)
{
std::string signature;
if(!(iss >> signature) || (signature != "ply"))
{
// if wrong file format
if(m_verbose)
std::cerr << "Error: incorrect file format line " << lineNumber << " of file" << std::endl;
return false;
}
}
// Reads format on 2nd line
else if(lineNumber == 2)
{
std::string tag, format_string, version;
if( !(iss >> tag >> format_string >> version) )
{
if(m_verbose)
std::cerr << "Error line " << lineNumber << " of file" << std::endl;
return false;
}
if(format_string == "ascii") format = ASCII;
else if(format_string == "binary_little_endian") format = BINARY_LITTLE_ENDIAN;
else if(format_string == "binary_big_endian") format = BINARY_BIG_ENDIAN;
else
{
if(m_verbose)
std::cerr << "Error: unknown file format \"" << format_string << "\" line " << lineNumber << std::endl;
return false;
}
}
// Comments and vertex properties
else
{
std::string keyword;
if(!(iss >> keyword))
{
if(m_verbose)
std::cerr << "Error line " << lineNumber << " of file" << std::endl;
return false;
}
if(keyword == "property")
{
std::string type, name;
if(!(iss >> type >> name))
{
if(m_verbose)
std::cerr << "Error line " << lineNumber << " of file" << std::endl;
return false;
}
if(type == "list") // Special case
{
std::string size_type = name;
std::string index_type;
name.clear();
if(!(iss >> index_type >> name))
{
if(m_verbose)
std::cerr << "Error line " << lineNumber << " of file" << std::endl;
return false;
}
TRY_TO_GENERATE_LIST_PROPERTY("char", "int8", boost::int8_t);
else TRY_TO_GENERATE_LIST_PROPERTY("uchar", "uint8", boost::uint8_t);
else TRY_TO_GENERATE_LIST_PROPERTY("short", "int16", boost::int16_t);
else TRY_TO_GENERATE_LIST_PROPERTY("ushort", "uint16", boost::uint16_t);
else TRY_TO_GENERATE_LIST_PROPERTY("int", "int32", boost::int32_t);
else TRY_TO_GENERATE_LIST_PROPERTY("uint", "uint32", boost::uint32_t);
else TRY_TO_GENERATE_LIST_PROPERTY("float", "float32", float);
else TRY_TO_GENERATE_LIST_PROPERTY("double", "float64", double);
}
else
{
TRY_TO_GENERATE_PROPERTY("char", "int8", boost::int8_t);
else TRY_TO_GENERATE_PROPERTY("uchar", "uint8", boost::uint8_t);
else TRY_TO_GENERATE_PROPERTY("short", "int16", boost::int16_t);
else TRY_TO_GENERATE_PROPERTY("ushort", "uint16", boost::uint16_t);
else TRY_TO_GENERATE_PROPERTY("int", "int32", boost::int32_t);
else TRY_TO_GENERATE_PROPERTY("uint", "uint32", boost::uint32_t);
else TRY_TO_GENERATE_PROPERTY("float", "float32", float);
else TRY_TO_GENERATE_PROPERTY("double", "float64", double);
}
continue;
}
else if(keyword == "comment")
{
std::string str = iss.str();
if(str.size() > 8)
{
std::copy(str.begin() + 8, str.end(), std::back_inserter(m_comments));
m_comments += "\n";
}
}
else if(keyword == "element")
{
std::string type;
std::size_t number;
if(!(iss >> type >> number))
{
if(m_verbose)
std::cerr << "Error line " << lineNumber << " of file" << std::endl;
return false;
}
m_elements.push_back(PLY_element(type, number));
}
// When end_header is reached, stop loop and begin reading points
else if(keyword == "end_header")
break;
}
}
return true;
}
~PLY_reader()
{
}
};
template <class Reader, class T>
void get_value(Reader& r, T& v, PLY_property<T>& wrapper)
{
return r.assign(v, wrapper.name);
}
template <std::size_t N>
struct Filler
{
template <class Reader, class Value_tuple, class PLY_property_tuple>
static void fill(Reader& r, Value_tuple& values, PLY_property_tuple wrappers)
{
get_value(r, std::get<N>(values), std::get<N+2>(wrappers));
Filler<N-1>::fill(r, values, wrappers);
}
};
template<int ...>
struct seq { };
template<int N, int ...S>
struct gens : gens<N-1, N-1, S...> { };
template<int ...S>
struct gens<0, S...> {
typedef seq<S...> type;
};
template<class ValueType, class Functor, class Tuple, int ...S>
ValueType call_functor(Functor f, Tuple t, seq<S...>) {
return f(std::get<S>(t) ...);
}
template <class ValueType, class Functor, typename ... T>
ValueType call_functor(Functor f, std::tuple<T...>& t)
{
return call_functor<ValueType>(f, t, typename gens<sizeof...(T)>::type());
}
template<>
struct Filler<0>
{
template <class Reader, class Value_tuple, class PLY_property_tuple>
static void fill(Reader& r, Value_tuple& values, PLY_property_tuple wrappers)
{
get_value(r, std::get<0>(values), std::get<2>(wrappers));
}
};
template <typename OutputValueType,
typename PropertyMap,
typename Constructor,
typename ... T>
void process_properties(PLY_element& element, OutputValueType& new_element,
std::tuple<PropertyMap, Constructor, PLY_property<T>...>&& current)
{
typedef typename boost::property_traits<PropertyMap>::value_type PmapValueType;
std::tuple<T...> values;
Filler<sizeof...(T)-1>::fill(element, values, current);
PmapValueType new_value = call_functor<PmapValueType>(std::get<1>(current), values);
put(std::get<0>(current), new_element, new_value);
}
template <typename OutputValueType,
typename PropertyMap,
typename Constructor,
typename ... T,
typename NextPropertyBinder,
typename ... PropertyMapBinders>
void process_properties(PLY_element& element, OutputValueType& new_element,
std::tuple<PropertyMap, Constructor, PLY_property<T>...>&& current,
NextPropertyBinder&& next,
PropertyMapBinders&& ... properties)
{
typedef typename boost::property_traits<PropertyMap>::value_type PmapValueType;
std::tuple<T...> values;
Filler<sizeof...(T)-1>::fill(element, values, current);
PmapValueType new_value = call_functor<PmapValueType>(std::get<1>(current), values);
put(std::get<0>(current), new_element, new_value);
process_properties(element, new_element, std::forward<NextPropertyBinder>(next),
std::forward<PropertyMapBinders>(properties)...);
}
template <typename OutputValueType, typename PropertyMap, typename T>
void process_properties(PLY_element& element, OutputValueType& new_element,
std::pair<PropertyMap, PLY_property<T> >&& current)
{
T new_value = T();
element.assign(new_value, current.second.name);
put(current.first, new_element, new_value);
}
template <typename OutputValueType, typename PropertyMap, typename T,
typename NextPropertyBinder, typename ... PropertyMapBinders>
void process_properties(PLY_element& element, OutputValueType& new_element,
std::pair<PropertyMap, PLY_property<T> >&& current,
NextPropertyBinder&& next,
PropertyMapBinders&& ... properties)
{
T new_value = T();
element.assign(new_value, current.second.name);
put(current.first, new_element, new_value);
process_properties(element, new_element, std::forward<NextPropertyBinder>(next),
std::forward<PropertyMapBinders>(properties)...);
}
template <typename Integer, class PolygonRange, class ColorOutputIterator>
bool read_PLY_faces(std::istream& in,
PLY_element& element,
PolygonRange& polygons,
ColorOutputIterator fc_out,
const char* vertex_indices_tag,
std::enable_if_t<
#if defined(MSC_VER_) && (MSC_VER > 1900)
CGAL::is_iterator_v<ColorOutputIterator>
#else
CGAL::is_iterator<ColorOutputIterator>::value
#endif
>* = nullptr)
{
typedef CGAL::IO::Color Color_rgb;
bool has_colors = false;
std::string rtag = "r", gtag = "g", btag = "b";
if((element.has_property<boost::uint8_t>("red") || element.has_property<boost::uint8_t>("r")) &&
(element.has_property<boost::uint8_t>("green") || element.has_property<boost::uint8_t>("g")) &&
(element.has_property<boost::uint8_t>("blue") || element.has_property<boost::uint8_t>("b")))
{
has_colors = true;
if(element.has_property<boost::uint8_t>("red"))
{
rtag = "red";
gtag = "green";
btag = "blue";
}
}
for(std::size_t j = 0; j < element.number_of_items(); ++ j)
{
for(std::size_t k = 0; k < element.number_of_properties(); ++ k)
{
PLY_read_number* property = element.property(k);
property->get(in);
if(in.fail())
return false;
}
std::tuple<std::vector<Integer>, boost::uint8_t, boost::uint8_t, boost::uint8_t> new_face;
if(has_colors)
{
process_properties(element, new_face,
std::make_pair(CGAL::make_nth_of_tuple_property_map<0>(new_face),
PLY_property<std::vector<Integer> >(vertex_indices_tag)),
std::make_pair(CGAL::make_nth_of_tuple_property_map<1>(new_face),
PLY_property<boost::uint8_t>(rtag.c_str())),
std::make_pair(CGAL::make_nth_of_tuple_property_map<2>(new_face),
PLY_property<boost::uint8_t>(gtag.c_str())),
std::make_pair(CGAL::make_nth_of_tuple_property_map<3>(new_face),
PLY_property<boost::uint8_t>(btag.c_str())));
*fc_out++ = Color_rgb(get<1>(new_face), get<2>(new_face), get<3>(new_face));
}
else
{
process_properties(element, new_face,
std::make_pair(CGAL::make_nth_of_tuple_property_map<0>(new_face),
PLY_property<std::vector<Integer> >(vertex_indices_tag)));
}
polygons.emplace_back();
::CGAL::internal::resize(polygons.back(), get<0>(new_face).size());
for(std::size_t i = 0; i < get<0>(new_face).size(); ++ i)
polygons.back()[i] = std::size_t(get<0>(new_face)[i]);
}
return true;
}
template <typename Integer, class PolygonRange, class ColorRange>
bool read_PLY_faces(std::istream& in,
PLY_element& element,
PolygonRange& polygons,
ColorRange& fcolors,
const char* vertex_indices_tag,
std::enable_if_t<
boost::has_range_const_iterator<ColorRange>::value
>* = nullptr)
{
return read_PLY_faces<Integer>(in, element, polygons, std::back_inserter(fcolors), vertex_indices_tag);
}
} // namespace PLY
} // namespace internal
#ifndef CGAL_NO_DEPREACTED_CODE
using IO::PLY_property;
using IO::make_ply_normal_reader;
using IO::make_ply_normal_writer;
using IO::make_ply_point_reader;
using IO::make_ply_point_writer;
#endif
/// \endcond
} // namespace CGAL
#endif // CGAL_IO_PLY_PLY_READER_H