general improvements typos/layout/consistency

use 'fo' as creation variable
This commit is contained in:
Michael Hemmer 2008-09-18 11:45:29 +00:00
parent 5a0a179939
commit 09efa13296
45 changed files with 111 additions and 100 deletions

View File

@ -39,7 +39,7 @@ to the last/outermost variable of a multivariate polynomial.
\ccc{LessThanComparable}\\ \ccc{LessThanComparable}\\
\ccCreation \ccCreation
\ccCreationVariable{ev} \ccCreationVariable{fo}
%\ccc{DefaultConstructible}\\ %\ccc{DefaultConstructible}\\
\ccConstructor{Exponent_vector();} \ccConstructor{Exponent_vector();}

View File

@ -85,7 +85,7 @@ the zero polynomial is represented by a single zero coefficient.
\ccCreation \ccCreation
\ccCreationVariable{poly} \ccCreationVariable{fo}
\ccConstructor{Polynomial ();} \ccConstructor{Polynomial ();}
{Introduces an variable initialized with 0.} {Introduces an variable initialized with 0.}
\ccGlue \ccGlue

View File

@ -152,11 +152,11 @@ is not a model of \ccc{UniqueFactorizationDomain}, this is of type \ccc{CGAL::Nu
%pseudo division %pseudo division
\ccNestedType{Pseudo_division } \ccNestedType{Pseudo_division }
{ A model of \ccc{PolynomialTraits_d::Pseudo_division}.}\ccGlue { A model of \ccc{PolynomialTraits_d::PseudoDivision}.}\ccGlue
\ccNestedType{Pseudo_division_remainder} \ccNestedType{Pseudo_division_remainder}
{ A model of \ccc{PolynomialTraits_d::Pseudo_division_remainder}.}\ccGlue { A model of \ccc{PolynomialTraits_d::PseudoDivisionRemainder}.}\ccGlue
\ccNestedType{Pseudo_division_quotient } \ccNestedType{Pseudo_division_quotient }
{ A model of \ccc{PolynomialTraits_d::Pseudo_division_quotient}.} { A model of \ccc{PolynomialTraits_d::PseudoDivisionQuotient}.}
%utcf %utcf
@ -167,7 +167,7 @@ is not a model of \ccc{UniqueFactorizationDomain}, this is of type \ccc{CGAL::Nu
{ A model of \ccc{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}.} { A model of \ccc{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}.}
\ccGlue \ccGlue
\ccNestedType{Content_up_to_constant_factor} \ccNestedType{Content_up_to_constant_factor}
{ A model of \ccc{PolynomialTraits_d::ContentUpToConstantFactor}.} { A model of \ccc{PolynomialTraits_d::UnivariateContentUpToConstantFactor}.}
\ccGlue \ccGlue
\ccNestedType{Square_free_factorize_up_to_constant_factor} \ccNestedType{Square_free_factorize_up_to_constant_factor}
{ A model of \ccc{PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor}.} { A model of \ccc{PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor}.}

View File

@ -3,8 +3,8 @@
\ccDefinition \ccDefinition
This \ccc{AdaptableUnaryFunction} computes a unique representative from the set: This \ccc{AdaptableUnaryFunction} computes a unique representative from the set:
$\{ q | \lambda * q = p with \lambda \in R \}$, where $p$ is the given polynomial and $\{ q | \lambda * q = p\ for\ some\ \lambda \in R \}$,
$R$ the base of the polynomial ring. where $p$ is the given polynomial and $R$ the base of the polynomial ring.
In particular, the computed polynomial has the same zero set as the given one. In particular, the computed polynomial has the same zero set as the given one.
In case \ccc{PolynomialTraits::Innermost_coefficient_type} is a model of \ccc{Field}, In case \ccc{PolynomialTraits::Innermost_coefficient_type} is a model of \ccc{Field},
@ -30,8 +30,9 @@ For all other cases the notion of uniqueness is up to the concrete model.
\ccOperations \ccOperations
\ccCreationVariable{canonicalize} \ccCreationVariable{fo}
\ccMethod{result_type operator()(first_argument_type f);}{} \ccMethod{result_type operator()(first_argument_type p);}{
Returns the cononical representative of $p$.}

View File

@ -15,7 +15,7 @@ This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_t
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{compare} \ccCreationVariable{fo}
\ccTypedef{typedef CGAL::Comparison_result result_type;}{} \ccTypedef{typedef CGAL::Comparison_result result_type;}{}
\ccGlue \ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
@ -24,7 +24,7 @@ This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_t
\ccOperations \ccOperations
\ccCreationVariable{compare} \ccCreationVariable{fo}
\ccMethod{result_type operator()(first_argument_type f, \ccMethod{result_type operator()(first_argument_type f,
second_argument_type g);} second_argument_type g);}
{Compare two polynomials.} {Compare two polynomials.}

View File

@ -13,7 +13,7 @@ to construct objects of type \ccc{PolynomialTraits_d::Polynomial_d}.
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxx}{xxxxxxxxxxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxx}{xxxxxxxxxxx}{}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}
\ccCreationVariable{construct_polynomial} \ccCreationVariable{fo}
\ccOperations \ccOperations
\ccMethod{result_type operator()();} \ccMethod{result_type operator()();}
{Construct the zero polynomial.} {Construct the zero polynomial.}

View File

@ -11,7 +11,7 @@ $p$ is not zero.\\
For instance the total degree of $p = x_0^2x_1^3+x_1^4$ with respect to $x_1$ is $4$. For instance the total degree of $p = x_0^2x_1^3+x_1^4$ with respect to $x_1$ is $4$.
The degree of the zero polynomial is set to $0$. From the mathematical point of view this should The degree of the zero polynomial is set to $0$. From the mathematical point of view this should
be $-inf$, but this would imply an inconvenient return type. be $-infinity$, but this would imply an inconvenient return type.
@ -23,7 +23,7 @@ be $-inf$, but this would imply an inconvenient return type.
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{degree} \ccCreationVariable{fo}
\ccTypedef{typedef int result_type;}{}\ccGlue \ccTypedef{typedef int result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}

View File

@ -14,7 +14,7 @@ the innermost leading coefficient of a
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{degree_vector} \ccCreationVariable{fo}
\ccTypedef{typedef Exponent_vector result_type;}{}\ccGlue \ccTypedef{typedef Exponent_vector result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}

View File

@ -10,7 +10,7 @@ This \ccc{AdaptableUnaryFunction} computes the derivative of a
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{differentiate} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}
\ccGlue \ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
@ -29,5 +29,5 @@ This \ccc{AdaptableUnaryFunction} computes the derivative of a
\ccSeeAlso \ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d} \ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept} \end{ccRefConcept}

View File

@ -10,7 +10,7 @@ This \ccc{AdaptableBinaryFunction} evaluates
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{evaluate} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{}

View File

@ -13,7 +13,7 @@ $p(u,v) = u^3 + uv^2$ and evaluated as such.
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{evaluate_homogeneous} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{} \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}
\ccOperations \ccOperations

View File

@ -14,7 +14,7 @@ domain one can consider its quotient field $Q(R)$ for which $gcd$s of
polynomials exist. polynomials exist.
This functor computes $gcd\_utcf(f,g) = D * gcd(f,g)$, This functor computes $gcd\_utcf(f,g) = D * gcd(f,g)$,
for some $D \in R$ such that $gcd\_utcf(f,g) \in R[x_0,\dots,x_{d-1}]$.\\ for some $D \in R$ such that $gcd\_utcf(f,g) \in R[x_0,\dots,x_{d-1}]$.
Hence, $gcd\_utcf(f,g)$ may not be a divisor of $f$ and $g$ in $R[x_0,\dots,x_{d-1}]$. Hence, $gcd\_utcf(f,g)$ may not be a divisor of $f$ and $g$ in $R[x_0,\dots,x_{d-1}]$.
\ccRefines \ccRefines
@ -25,7 +25,7 @@ Hence, $gcd\_utcf(f,g)$ may not be a divisor of $f$ and $g$ in $R[x_0,\dots,x_{d
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{gcd_utcf} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{}

View File

@ -15,18 +15,18 @@ This \ccc{AdaptableBinaryFunction} provides access to coefficients of a
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type ;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type ;}{}
\ccTypedef{typedef int second_argument_type;}{} \ccTypedef{typedef int second_argument_type;}{}
\ccCreationVariable{get_coefficient} \ccCreationVariable{fo}
\ccOperations \ccOperations
\ccMethod{result_type operator()( first_argument_type p, \ccMethod{result_type operator()( first_argument_type p,
second_argument_type e);}{ second_argument_type e);}{
Returns coefficient of $x_{d-1}^e$ by value, For given polynomial $p$ this operator returns the coefficient
where $x_{d-1}$ is the outermost variable.} of $x_{d-1}^e$ by value, where $x_{d-1}$ is the outermost variable.}
\ccMethod{result_type operator()( first_argument_type p, \ccMethod{result_type operator()( first_argument_type p,
second_argument_type e, second_argument_type e,
int i);}{ int i);}{
Returns coefficient of $x_{i}^e$ by value. For given polynomial $p$ this operator returns coefficient of $x_{i}^e$ by value.
} }
%\ccHasModels %\ccHasModels

View File

@ -18,12 +18,13 @@ the (multivariate) monomial specified by the given \ccc{Exponent_vector}.
\ccGlue \ccGlue
\ccTypedef{typedef Exponent_vector second_argument_type;}{} \ccTypedef{typedef Exponent_vector second_argument_type;}{}
\ccCreationVariable{get_innermost_coefficient} \ccCreationVariable{fo}
\ccOperations \ccOperations
\ccMethod{result_type operator()( first_argument_type p, \ccMethod{result_type operator()( first_argument_type p,
second_argument_type v);}{ second_argument_type v);}{
Returns the innermost coefficient of the monomial defined by the given \ccc{Exponent_vector} $v$. } For given polynomial $p$ this operator returns the innermost coefficient of the
monomial corresponding to the given \ccc{Exponent_vector} $v$. }
%\ccHasModels %\ccHasModels

View File

@ -3,13 +3,13 @@
\ccDefinition \ccDefinition
This \ccc{AdaptableUnaryFunction} computes the innermost leading coefficient This \ccc{AdaptableUnaryFunction} computes the innermost leading coefficient
of a \ccc{PolynomialTraits_d::Polynomial_d}. The innermost leading coefficient is recursively defined as the innermost leading coefficient of the leading coefficient of $p$. In case $p$ is univariate it coincides with the leading coefficient. of a \ccc{PolynomialTraits_d::Polynomial_d} $p$. The innermost leading coefficient is recursively defined as the innermost leading coefficient of the leading coefficient of $p$. In case $p$ is univariate it coincides with the leading coefficient.
\ccRefines \ccRefines
\ccc{AdaptableUnaryFunction} \ccc{AdaptableUnaryFunction}
\ccTypes \ccTypes
\ccCreationVariable{innermost_leading_coefficient} \ccCreationVariable{fo}
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type result_type;}{} \ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type result_type;}{}
\ccGlue \ccGlue

View File

@ -18,7 +18,7 @@ field of the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient_type}
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{integral_division_utcf} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{}
@ -27,7 +27,7 @@ field of the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient_type}
\ccMethod{result_type operator()(first_argument_type f, \ccMethod{result_type operator()(first_argument_type f,
second_argument_type g);} second_argument_type g);}
{return a denominator-free, constant multiple of $f/g$} {Returns a denominator-free, constant multiple of $f/g$.}

View File

@ -18,7 +18,7 @@ order of the coefficients with respect to the specified variable.
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{invert} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
@ -36,5 +36,6 @@ order of the coefficients with respect to the specified variable.
\ccSeeAlso \ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d} \ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept} \end{ccRefConcept}

View File

@ -11,7 +11,7 @@ which is represented as an iterator range.
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{is_zero_at} \ccCreationVariable{fo}
\ccTypedef{typedef bool result_type;}{}\ccGlue \ccTypedef{typedef bool result_type;}{}\ccGlue
\ccOperations \ccOperations
@ -22,7 +22,7 @@ result_type operator()(PolynomialTraits_d::Polynomial_d p,
InputIterator end );}{ InputIterator end );}{
Computes whether $p$ is zero at the Cartesian point given by the iterator range, Computes whether $p$ is zero at the Cartesian point given by the iterator range,
where $begin$ is referring to the innermost variable. where $begin$ is referring to the innermost variable.
\ccPrecond (end-begin == \ccc{PolynomialTraits_d::d}) \ccPrecond{(end-begin == \ccc{PolynomialTraits_d::d})}
} }
%\ccHasModels %\ccHasModels

View File

@ -15,19 +15,20 @@ polynomial $p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1$.
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{is_zero_at_homogeneous} \ccCreationVariable{fo}
\ccTypedef{typedef bool result_type;}{}\ccGlue \ccTypedef{typedef bool result_type;}{}\ccGlue
\ccOperations \ccOperations
\ccMethod{
template <class InputIterator> template <class InputIterator>
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, result_type operator()(PolynomialTraits_d::Polynomial_d p,
InputIterator begin, InputIterator begin,
InputIterator end );}{ InputIterator end );}{
Computes whether $p$ is zero at the homogeneous point given by the iterator range, Computes whether $p$ is zero at the homogeneous point given by the iterator range,
where $begin$ is referring to the innermost variable. where $begin$ is referring to the innermost variable.
\ccPrecond{\ccc{std::iterator_traits< InputIterator >::value_type} is \ccPrecond{\ccc{std::iterator_traits< InputIterator >::value_type} is
\ccc{PolynomialTraits_d::Innermost_coefficient_type}.} \ccc{PolynomialTraits_d::Innermost_coefficient_type}.}
\ccPrecond \ccPrecond{(end-begin == \ccc{PolynomialTraits_d::d}+1)}
} }
%\ccHasModels %\ccHasModels

View File

@ -6,11 +6,11 @@ This \ccc{AdaptableBinaryFunction} computes the leading coefficient
of a \ccc{PolynomialTraits_d::Polynomial_d}. of a \ccc{PolynomialTraits_d::Polynomial_d}.
\ccRefines \ccRefines
\ccc{AdaptableBinaryFunction} \ccc{AdaptableUnaryFunction}
\ccTypes \ccTypes
\ccCreationVariable{leading_coefficient} \ccCreationVariable{fo}
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}\ccGlue

View File

@ -13,19 +13,19 @@ Given this decomposition, the square free part is defined as the product $g_1 \
which is computed by this functor. which is computed by this functor.
\ccRefines \ccRefines
\ccc{AdaptableBinaryFunction} \ccc{AdaptableUnaryFunction}
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{make_square_free} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}
\ccGlue \ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
\ccOperations \ccOperations
\ccMethod{result_type operator()(argument_type p);} \ccMethod{result_type operator()(argument_type p);}
{ return the square-free part of $p$.} { Returns the square-free part of $p$.}
%\ccHasModels %\ccHasModels
@ -34,5 +34,6 @@ which is computed by this functor.
\ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::Canonicalize} \ccRefIdfierPage{PolynomialTraits_d::Canonicalize}\\
\end{ccRefConcept} \end{ccRefConcept}

View File

@ -17,7 +17,7 @@ This function may be used to make a certain variable the outer most variable.
\ccOperations \ccOperations
\ccCreationVariable{move} \ccCreationVariable{fo}
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d, \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d,
int i, int j);}{ int i, int j);}{
This function moves the variable at position $i$ to its new position $j$ and returns This function moves the variable at position $i$ to its new position $j$ and returns

View File

@ -14,7 +14,7 @@ This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_t
\ccTypes \ccTypes
\ccCreationVariable{multivariate_content} \ccCreationVariable{fo}
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxx}{xxx}{}
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type result_type;}{} \ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type result_type;}{}
\ccGlue \ccGlue

View File

@ -15,7 +15,7 @@ of all odd coefficients with respect to the specified variable.
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{negate} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}

View File

@ -5,7 +5,7 @@
This \ccc{AdaptableFunctor} computes the so called {\em pseudo division} This \ccc{AdaptableFunctor} computes the so called {\em pseudo division}
of to polynomials $f$ and $g$. of to polynomials $f$ and $g$.
Given $f$ and $g \not 0$ this functor computes quotient $q$ and Given $f$ and $g \neq 0$ this functor computes quotient $q$ and
remainder $r$ such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$, remainder $r$ such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$,
where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$ where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$

View File

@ -5,7 +5,7 @@
This \ccc{AdaptableBinaryFunction} computes the quotient of the so This \ccc{AdaptableBinaryFunction} computes the quotient of the so
called {\em pseudo division} of to polynomials $f$ and $g$. called {\em pseudo division} of to polynomials $f$ and $g$.
Given $f$ and $g \not 0$ on can compute quotient $q$ and remainder $r$ Given $f$ and $g \neq 0$ on can compute quotient $q$ and remainder $r$
such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$, such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$,
where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$ where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$

View File

@ -5,7 +5,7 @@
This \ccc{AdaptableBinaryFunction} computes the remainder of the so called This \ccc{AdaptableBinaryFunction} computes the remainder of the so called
{\em pseudo division} of to polynomials $f$ and $g$. {\em pseudo division} of to polynomials $f$ and $g$.
Given $f$ and $g \not 0$ one can compute quotient $q$ and remainder $r$ Given $f$ and $g \neq 0$ one can compute quotient $q$ and remainder $r$
such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$, such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$,
where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$ where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$

View File

@ -29,7 +29,7 @@ For more information we refer to, e.g., \cite{gg-mca-99}.
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{resultant} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{} \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}
\ccGlue \ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}

View File

@ -13,7 +13,7 @@ the polynomial is considered as a univariate polynomial in one specific variable
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{scale} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
\ccGlue \ccGlue

View File

@ -16,7 +16,7 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{scale_homogeneous} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}
\ccOperations \ccOperations

View File

@ -1,27 +1,29 @@
\begin{ccRefConcept}{PolynomialTraits_d::Shift} \begin{ccRefConcept}{PolynomialTraits_d::Shift}
\ccDefinition \ccDefinition
This \ccc{AdaptableFunctor} multiplies a \ccc{PolynomialTraits_d::Polynomial_d} by This \ccc{AdaptableBinaryFunction} multiplies a \ccc{PolynomialTraits_d::Polynomial_d}
the given power of the specified variable. by the given power of the specified variable.
This functor is provided for efficiency reasons, since multiplication by some variable This functor is provided for efficiency reasons, since multiplication by some variable
will in general correspond to a shift of coefficients in the internal representation. will in general correspond to a shift of coefficients in the internal representation.
\ccRefines \ccRefines
\ccc{AdaptableFunctor} \ccc{AdaptableBinaryFunction}
\ccTypes \ccTypes
\ccCreationVariable{shift} \ccCreationVariable{fo}
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
\ccTypedef{typedef int second_argument_type;}{}
\ccOperations \ccOperations
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, \ccMethod{result_type operator()(first_argument_type p,
int e);} second_argument_type e);}
{ return $p * x_{d-1}^e$ { return $p * x_{d-1}^e$
\ccPrecond $0 \leq e$ } \ccPrecond $0 \leq e$ }
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, \ccMethod{result_type operator()(first_argument_type p,
int e, second_argument_type e,
int i);} int i);}
{ Same as first operator but for variable $x_i$. { Same as first operator but for variable $x_i$.
\ccPrecond $0 \leq e$ \ccPrecond $0 \leq e$

View File

@ -14,7 +14,7 @@ This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_t
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{sign_at} \ccCreationVariable{fo}
\ccTypedef{typedef CGAL::Sign result_type;}{}\ccGlue \ccTypedef{typedef CGAL::Sign result_type;}{}\ccGlue
\ccOperations \ccOperations

View File

@ -18,12 +18,13 @@ This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_t
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{sign_at_homogeneous} \ccCreationVariable{fo}
\ccTypedef{typedef CGAL::Sign result_type;}{}\ccGlue \ccTypedef{typedef CGAL::Sign result_type;}{}\ccGlue
\ccOperations \ccOperations
\ccMethod{
template <class InputIterator> template <class InputIterator>
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, result_type operator()(PolynomialTraits_d::Polynomial_d p,
InputIterator begin, InputIterator begin,
InputIterator end );}{ InputIterator end );}{
Returns the sign of $p$ at the given homogeneous point, where $begin$ is Returns the sign of $p$ at the given homogeneous point, where $begin$ is

View File

@ -25,7 +25,7 @@ DefaultConstructible\\
\ccOperations \ccOperations
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{sqff} \ccCreationVariable{fo}
\ccMethod{template<class OutputIterator> \ccMethod{template<class OutputIterator>
OutputIterator operator()(PolynomialTraits_d::Polynomial_d p, OutputIterator operator()(PolynomialTraits_d::Polynomial_d p,
@ -38,8 +38,7 @@ OutputIterator operator()(PolynomialTraits_d::Polynomial_d p,
\ccMethod{template<class OutputIterator> \ccMethod{template<class OutputIterator>
OutputIterator operator()(PolynomialTraits_d::Polynomial_d p, OutputIterator operator()(PolynomialTraits_d::Polynomial_d p,
OutputIterator it, OutputIterator it);}
PolynomialTraits_d::Innermost_coefficient_type& a);}
{ As the first operator, just not computing the factor $a$. } { As the first operator, just not computing the factor $a$. }
%\ccHasModels %\ccHasModels

View File

@ -29,12 +29,11 @@ DefaultConstructible\\
\ccOperations \ccOperations
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{sqff_utcf} \ccCreationVariable{fo}
\ccMethod{template<class OutputIterator> \ccMethod{template<class OutputIterator>
OutputIterator operator()(PolynomialTraits_d::Polynomial_d p, OutputIterator operator()(PolynomialTraits_d::Polynomial_d p,
OutputIterator it, OutputIterator it);}
PolynomialTraits_d::Innermost_coefficient_type& a);}
{ computes square-free factorization of $p$.\\ { computes square-free factorization of $p$.\\
The \ccc{OutputIterator} must allow the value type The \ccc{OutputIterator} must allow the value type
\ccc{std::pair<PolynomialTraits_d::Polynomial_d,int>}. \ccc{std::pair<PolynomialTraits_d::Polynomial_d,int>}.

View File

@ -13,6 +13,7 @@ The result is written in an output range,
starting with the $0$th Sturm-Habicht polynomial (which is equal to starting with the $0$th Sturm-Habicht polynomial (which is equal to
the discriminant of $f$ up to a multiple of the leading coefficient) the discriminant of $f$ up to a multiple of the leading coefficient)
\ccCreationVariable{fo}
\ccOperations \ccOperations
\ccMethod{template<typename OutputIterator> \ccMethod{template<typename OutputIterator>
OutputIterator operator()(Polynomial_d f, OutputIterator operator()(Polynomial_d f,

View File

@ -6,6 +6,7 @@ Computes the Sturm-Habicht sequence of a polynomials $f$ of type
Additionally, it computes two ranges of cofactors, {\tt co\_f} and {\tt co\_fx} Additionally, it computes two ranges of cofactors, {\tt co\_f} and {\tt co\_fx}
with the property that {\tt stha[i] == co\_f[i] f + co\_fx[i] f'}. with the property that {\tt stha[i] == co\_f[i] f + co\_fx[i] f'}.
\ccCreationVariable{fo}
\ccOperations \ccOperations
\ccMethod{template< typename OutputIterator1, \ccMethod{template< typename OutputIterator1,
typename OutputIterator2, typename OutputIterator2,

View File

@ -5,22 +5,24 @@ This \ccc{Functor} substitutes all variables of a given multivariate
\ccc{PolynomialTraits_d::Polynomial_d} by the values given in the \ccc{PolynomialTraits_d::Polynomial_d} by the values given in the
iterator range, where begin refers the the value for the innermost variable. iterator range, where begin refers the the value for the innermost variable.
Note that the \ccc{result_type} is the coercion type of the value type of the
given iterator range and \ccc{PolynomialTraits_d::Innermost_coefficient_type}.
In particular \ccc{std::iterator_traits<Input_iterator>::value_type} must be at least
\ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient_type}.
\ccRefines \ccRefines
Assignable\\ Assignable\\
CopyConstructible\\ CopyConstructible\\
DefaultConstructible\\ DefaultConstructible\\
% \ccTypes \ccTypes
Note that the \ccc{result_type} is the coercion type of the value type of the
given iterator range and \ccc{PolynomialTraits_d::Innermost_coefficient_type}.
In particular \ccc{std::iterator_traits<Input_iterator>::value_type} must be at least
\ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient_type}.
Hence, it can not be provided as a public type in advance.
% no public types % no public types
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{substitute} \ccCreationVariable{fo}
\ccOperations \ccOperations
\ccMethod{ \ccMethod{
@ -29,7 +31,8 @@ result_type operator()(PolynomialTraits_d::Polynomial_d p,
Input_iterator begin, Input_iterator end);}{ Input_iterator begin, Input_iterator end);}{
Substitutes each variable of $p$ by the values given in the iterator range, Substitutes each variable of $p$ by the values given in the iterator range,
where begin refers to the innermost variable $x_0$. where begin refers to the innermost variable $x_0$.
\ccPrecond The length of the iterator range is \ccc{PolynomialTraits_d::d}.} \ccPrecond{(end-begin == \ccc{PolynomialTraits_d::d})}
}
%\ccHasModels %\ccHasModels

View File

@ -10,22 +10,22 @@ Hence the iterator range is required to be of length \ccc{PolynomialTraits_d::d+
For instance the polynomial $p(x_0,x_1) = x_0^2x_1^3+x_1^4$ is interpreted as the homogeneous For instance the polynomial $p(x_0,x_1) = x_0^2x_1^3+x_1^4$ is interpreted as the homogeneous
polynomial $p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1$. polynomial $p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1$.
Note that the \ccc{result_type} is the coercion type of the value type of the
given iterator range and \ccc{PolynomialTraits_d::Innermost_coefficient_type}.
In particular \ccc{std::iterator_traits<Input_iterator>::value_type} must be at least
\ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient_type}.
\ccRefines \ccRefines
Assignable\\ Assignable\\
CopyConstructible\\ CopyConstructible\\
DefaultConstructible\\ DefaultConstructible\\
% \ccTypes \ccTypes
Note that the \ccc{result_type} is the coercion type of the value type of the
given iterator range and \ccc{PolynomialTraits_d::Innermost_coefficient_type}.
In particular \ccc{std::iterator_traits<Input_iterator>::value_type} must be at least
\ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient_type}.
Hence, it can not be provided as a public type in advance.
% no public types % no public types
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{substitute_homogeneous} \ccCreationVariable{fo}
\ccOperations \ccOperations
\ccMethod{ \ccMethod{
@ -36,8 +36,8 @@ Substitute each variable of $p$ by the values given in the iterator range, where
$p$ is interpreted as a homogeneous polynomial in all variables. $p$ is interpreted as a homogeneous polynomial in all variables.
The begin iterator refers to the innermost variable $x_0$. The begin iterator refers to the innermost variable $x_0$.
The homogeneous degree is considered as equal to the total degree of $p$. The homogeneous degree is considered as equal to the total degree of $p$.
\ccPrecond The length of the iterator range is \ccc{PolynomialTraits_d::d+1}.} \ccPrecond{(end-begin == \ccc{PolynomialTraits_d::d})+1}
}
%\ccHasModels %\ccHasModels

View File

@ -15,7 +15,7 @@ This \ccc{AdaptableFunctor} swaps two variables of a multivariate polynomial.
\ccOperations \ccOperations
\ccCreationVariable{swap} \ccCreationVariable{fo}
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d, \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d,
int i, int j);} int i, int j);}
{ return polynomial with interchanged variables $x_i$,$x_j$. { return polynomial with interchanged variables $x_i$,$x_j$.

View File

@ -28,7 +28,7 @@ be $-inf$, but this would imply an inconvenient return type.
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
\ccOperations \ccOperations
\ccCreationVariable{total_degree} \ccCreationVariable{fo}
\ccMethod{result_type operator()(argument_type p);} \ccMethod{result_type operator()(argument_type p);}
{Computes the total degree of $p$.} {Computes the total degree of $p$.}

View File

@ -13,7 +13,7 @@ the polynomial is considered as a univariate polynomial in one specific variable
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{translate} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}
\ccGlue \ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}

View File

@ -16,7 +16,7 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{translate_homogeneous} \ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccOperations \ccOperations

View File

@ -16,7 +16,7 @@ a \ccc{Field} or a \ccc{UniqueFactorizationDomain}.
\ccTypes \ccTypes
\ccCreationVariable{univariate_content} \ccCreationVariable{fo}
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}\ccGlue

View File

@ -2,7 +2,7 @@
\ccDefinition \ccDefinition
This \ccc{AdaptableBinaryFunction} computes the content of a This \ccc{AdaptableUnaryFunction} computes the content of a
\ccc{PolynomialTraits_d::Polynomial_d} \ccc{PolynomialTraits_d::Polynomial_d}
with respect to the univariate (recursive) view on the with respect to the univariate (recursive) view on the
polynomial {\em up to a constant factor (utcf)}, that is, polynomial {\em up to a constant factor (utcf)}, that is,
@ -15,14 +15,14 @@ However, a concept \ccc{PolynomialTraits_d::MultivariateContentUpToConstantFacto
does not exist since the result is trivial. does not exist since the result is trivial.
\ccRefines \ccRefines
\ccc{AdaptableBinaryFunction} \ccc{AdaptableUnaryFunction}
\ccCreationVariable{fo}
\ccTypes \ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
\ccTypedef{typedef int second_argument_type;}{}
\ccOperations \ccOperations
\ccMethod{result_type operator()(first_argument_type p);} \ccMethod{result_type operator()(first_argument_type p);}