mirror of https://github.com/CGAL/cgal
minor updates in the doc: set_domain, dual, etc.
This commit is contained in:
parent
e63d9a3009
commit
23e5126bb2
|
|
@ -258,6 +258,28 @@ predicates).
|
|||
{same as the previous method for facet \ccc{(c,i)}.
|
||||
\ccPrecond{$i\in\{0,1,2,3\}$}}
|
||||
|
||||
\ccMethod{template <class OutputIterator>
|
||||
OutputIterator
|
||||
dual(Edge e, OutputIterator pts) const;}
|
||||
{Returns in the output iterator the points of the dual polygon of
|
||||
edge \ccc{e} in consecutive order. The points form the dual polygon
|
||||
in $\mathbb R^3$, so they do not necessarily lie all inside the
|
||||
original domain. TODO: specify clockwiseness.}
|
||||
|
||||
\ccMethod{template <class OutputIterator>
|
||||
OutputIterator
|
||||
dual(Cell_handle c, int i, int j, OutputIterator pts) const;}
|
||||
{same as the previous method for edge \ccc{(c,i,j)}.
|
||||
\ccPrecond{$i,j\in\{0,1,2,3\}, i\neq j$}}
|
||||
|
||||
\ccMethod{template <class OutputIterator>
|
||||
OutputIterator
|
||||
dual(Vertex_handle v, OutputIterator pts) const;}
|
||||
{Returns in the output iterator the points of the dual polyhedron of
|
||||
vertex \ccc{v} in no particular order. The points form the dual
|
||||
polyhedron in $\mathbb R^3$, so they do not necessarily lie all
|
||||
inside the original domain.}
|
||||
|
||||
\ccMethod{template <class Stream> Stream & draw_dual(Stream & os);}
|
||||
{Sends the set of duals to all the facets of \ccVar\ into \ccc{os}.}
|
||||
|
||||
|
|
|
|||
|
|
@ -58,7 +58,8 @@ The class \ccc{Triangulation_3} defines the following types:
|
|||
\ccTypedef{typedef Geometric_traits::Tetrahedron_3 Tetrahedron;}{}
|
||||
|
||||
\ccTypedef{typedef std::pair< Point, Offset >
|
||||
Periodic_point;}{}
|
||||
Periodic_point;}{Represents a point-offset pair. The point has to
|
||||
lie in the original domain.}
|
||||
\ccGlue
|
||||
\ccTypedef{typedef array< Periodic_point, 2>
|
||||
Periodic_segment;}{}
|
||||
|
|
@ -214,17 +215,6 @@ a permutation of their vertices).}
|
|||
\ccMethod{const Triangulation_data_structure & tds() const;}
|
||||
{Returns a const reference to the triangulation data structure.}
|
||||
|
||||
\begin{ccAdvanced}
|
||||
\ccHeading{Non const access}
|
||||
The responsibility of keeping a valid triangulation belongs to the user
|
||||
when using advanced operations allowing a direct manipulation of the \ccc{tds}.
|
||||
This method is mainly a help for users implementing their own triangulation
|
||||
algorithms.
|
||||
|
||||
\ccMethod{Triangulation_data_structure & tds();}
|
||||
{Returns a reference to the triangulation data structure.}
|
||||
\end{ccAdvanced}
|
||||
|
||||
\ccMethod{Iso_cuboid domain() const;}
|
||||
{Returns the original domain.}
|
||||
|
||||
|
|
@ -233,6 +223,19 @@ algorithms.
|
|||
{Returns the number of sheets of the covering the triangulation is
|
||||
currently computed in.}
|
||||
|
||||
\ccHeading{Non const access}
|
||||
\ccMethod{void set_domain(const Iso_cuboid dom);}
|
||||
{Permits to change the domain. Note that this function calls \ccc{clear()},
|
||||
i.e., it erases the existing triangulation. }
|
||||
|
||||
The responsibility of keeping a valid triangulation belongs to the user
|
||||
when using advanced operations allowing a direct manipulation of the \ccc{tds}.
|
||||
This method is mainly a help for users implementing their own triangulation
|
||||
algorithms.
|
||||
|
||||
\ccMethod{Triangulation_data_structure & tds();}
|
||||
{Returns a reference to the triangulation data structure.}
|
||||
|
||||
\ccThree{bool}{t.is_extensible_triangulation_in_1_sheet_h2()x}{}
|
||||
\ccHeading{Non-constant-time queries and conversions}
|
||||
\ccMethod{bool is_extensible_triangulation_in_1_sheet_h1() const;}
|
||||
|
|
@ -346,10 +349,11 @@ inside of cell \ccc{c}.
|
|||
{Returns the periodic tetrahedron formed by the four point-offset pairs
|
||||
corresponding to the four vertices of \ccc{c}.}
|
||||
|
||||
Note: the following functions require exact constructions in the traits to
|
||||
Note: the following functions require constructions in the traits to
|
||||
be exact.
|
||||
\ccMethod{Point point(const Periodic_point & p ) const;}
|
||||
{Converts the \ccc{Periodic_point} \ccc{s} to a \ccc{Point}.}
|
||||
{Converts the \ccc{Periodic_point} \ccc{s} (point-offset pair) to the
|
||||
corresponding \ccc{Point} in $\mathbb R^3$.}
|
||||
\ccGlue
|
||||
\ccMethod{Segment segment(const Periodic_segment & s) const;}
|
||||
{Converts the \ccc{Periodic_segment} \ccc{s} to a \ccc{Segment}.}
|
||||
|
|
|
|||
Loading…
Reference in New Issue