Cleaned trailing whitespace in Point_23/Weighted_point_23

This commit is contained in:
Mael Rouxel-Labbé 2017-04-13 12:01:08 +02:00
parent 7d16ce69ec
commit 23f2df44be
4 changed files with 264 additions and 264 deletions

View File

@ -3,35 +3,35 @@ namespace CGAL {
/*!
\ingroup kernel_classes2
An object `p` of the class `Point_2` is a point in the two-dimensional
Euclidean plane \f$ \E^2\f$.
An object `p` of the class `Point_2` is a point in the two-dimensional
Euclidean plane \f$ \E^2\f$.
Remember that `Kernel::RT` and `Kernel::FT` denote a
`RingNumberType` and a `FieldNumberType`, respectively. For the kernel
Remember that `Kernel::RT` and `Kernel::FT` denote a
`RingNumberType` and a `FieldNumberType`, respectively. For the kernel
model `Cartesian<NT>`, the two types are the same. For the
kernel model `Homogeneous<NT>`, `Kernel::RT` is equal
to `NT`, and `Kernel::FT` is equal to `Quotient<NT>`.
\cgalHeading{Operators}
The following operations can be applied on points:
The following operations can be applied on points:
\cgalHeading{Example}
The following declaration creates two points with
%Cartesian double coordinates.
The following declaration creates two points with
%Cartesian double coordinates.
\code
Point_2< Cartesian<double> > p, q(1.0, 2.0);
Point_2< Cartesian<double> > p, q(1.0, 2.0);
\endcode
The variable `p` is uninitialized and should first be used on
the left hand side of an assignment.
The variable `p` is uninitialized and should first be used on
the left hand side of an assignment.
\code
p = q;
p = q;
std::cout << p.x() << " " << p.y() << std::endl;
std::cout << p.x() << " " << p.y() << std::endl;
\endcode
\cgalModels `Kernel::Point_2`
@ -41,68 +41,68 @@ template< typename Kernel >
class Point_2 {
public:
/// \name Types
/// \name Types
/// @{
/*!
An iterator for enumerating the
%Cartesian coordinates of a point.
*/
typedef unspecified_type Cartesian_const_iterator;
An iterator for enumerating the
%Cartesian coordinates of a point.
*/
typedef unspecified_type Cartesian_const_iterator;
/// @}
/// @}
/// \name Creation
/// \name Creation
/// @{
/*!
introduces a variable `p` with %Cartesian coordinates
\f$ (0,0)\f$.
*/
Point_2(const Origin &ORIGIN);
introduces a variable `p` with %Cartesian coordinates
\f$ (0,0)\f$.
*/
Point_2(const Origin &ORIGIN);
/*!
introduces a point `p` initialized to `(x,y)`.
*/
Point_2(int x, int y);
introduces a point `p` initialized to `(x,y)`.
*/
Point_2(int x, int y);
/*!
introduces a point `p` initialized to `(x,y)`
provided `RT` supports construction from `double`.
*/
Point_2(double x, double y);
provided `RT` supports construction from `double`.
*/
Point_2(double x, double y);
/*!
introduces a point `p` initialized to `(hx/hw,hy/hw)`.
\pre `hw` \f$ \neq\f$ `Kernel::RT(0)`.
*/
Point_2(const Kernel::RT &hx, const Kernel::RT &hy, const Kernel::RT &hw = RT(1));
introduces a point `p` initialized to `(hx/hw,hy/hw)`.
\pre `hw` \f$ \neq\f$ `Kernel::RT(0)`.
*/
Point_2(const Kernel::RT &hx, const Kernel::RT &hy, const Kernel::RT &hw = RT(1));
/*!
introduces a point `p` initialized to `(x,y)`.
*/
Point_2(const Kernel::FT &x, const Kernel::FT &y);
introduces a point `p` initialized to `(x,y)`.
*/
Point_2(const Kernel::FT &x, const Kernel::FT &y);
/*!
introduces a point from a weighted point.
*/
Point_2(const Kernel::Weighted_point_2 &wp);
/// @}
/// @}
/// \name Operations
/// \name Operations
/// @{
/*!
Test for equality. Two points are equal, iff their \f$ x\f$ and \f$ y\f$
coordinates are equal. The point can be compared with `ORIGIN`.
*/
bool operator==(const Point_2<Kernel> &q) const;
Test for equality. Two points are equal, iff their \f$ x\f$ and \f$ y\f$
coordinates are equal. The point can be compared with `ORIGIN`.
*/
bool operator==(const Point_2<Kernel> &q) const;
/*!
Test for inequality. The point can be compared with `ORIGIN`.
*/
bool operator!=(const Point_2<Kernel> &q) const;
Test for inequality. The point can be compared with `ORIGIN`.
*/
bool operator!=(const Point_2<Kernel> &q) const;
/*!
translates the point by the vector `v`.
@ -120,34 +120,34 @@ Point_2<Kernel>& operator-=(const Vector_2<Kernel> &v);
/// There are two sets of coordinate access functions, namely to the
/// homogeneous and to the %Cartesian coordinates. They can be used
/// independently from the chosen kernel model. Note that you do not
/// loose information with the homogeneous representation, because the
/// lose information with the homogeneous representation, because the
/// `FieldNumberType` is a quotient.
/// @{
/*!
returns the homogeneous \f$ x\f$ coordinate.
*/
Kernel::RT hx() const;
returns the homogeneous \f$ x\f$ coordinate.
*/
Kernel::RT hx() const;
/*!
returns the homogeneous \f$ y\f$ coordinate.
*/
Kernel::RT hy() const;
returns the homogeneous \f$ y\f$ coordinate.
*/
Kernel::RT hy() const;
/*!
returns the homogenizing coordinate.
*/
Kernel::RT hw() const;
returns the homogenizing coordinate.
*/
Kernel::RT hw() const;
/*!
returns the %Cartesian \f$ x\f$ coordinate, that is `hx()`/`hw()`.
*/
Kernel::FT x() const;
returns the %Cartesian \f$ x\f$ coordinate, that is `hx()`/`hw()`.
*/
Kernel::FT x() const;
/*!
returns the %Cartesian \f$ y\f$ coordinate, that is `hy()`/`hw()`.
*/
Kernel::FT y() const;
returns the %Cartesian \f$ y\f$ coordinate, that is `hy()`/`hw()`.
*/
Kernel::FT y() const;
/// @}
@ -158,50 +158,50 @@ Kernel::FT y() const;
/// @{
/*!
returns the i'th homogeneous coordinate of `p`, starting with 0.
\pre \f$ 0\leq i \leq2\f$.
*/
Kernel::RT homogeneous(int i) const;
returns the i'th homogeneous coordinate of `p`, starting with 0.
\pre \f$ 0\leq i \leq2\f$.
*/
Kernel::RT homogeneous(int i) const;
/*!
returns the i'th %Cartesian coordinate of `p`, starting with 0.
\pre \f$ 0\leq i \leq1\f$.
*/
Kernel::FT cartesian(int i) const;
/*!
returns `cartesian(i)`.
returns the i'th %Cartesian coordinate of `p`, starting with 0.
\pre \f$ 0\leq i \leq1\f$.
*/
Kernel::FT operator[](int i) const;
Kernel::FT cartesian(int i) const;
/*!
returns an iterator to the %Cartesian coordinates
of `p`, starting with the 0th coordinate.
*/
Cartesian_const_iterator cartesian_begin() const;
returns `cartesian(i)`.
\pre \f$ 0\leq i \leq1\f$.
*/
Kernel::FT operator[](int i) const;
/*!
returns an off the end iterator to the Cartesian
coordinates of `p`.
*/
Cartesian_const_iterator cartesian_end() const;
returns an iterator to the %Cartesian coordinates
of `p`, starting with the 0th coordinate.
*/
Cartesian_const_iterator cartesian_begin() const;
/*!
returns the dimension (the constant 2).
*/
int dimension() const;
returns an off the end iterator to the Cartesian
coordinates of `p`.
*/
Cartesian_const_iterator cartesian_end() const;
/*!
returns a bounding box containing `p`. Note that bounding boxes
are not parameterized with whatsoever.
*/
Bbox_2 bbox() const;
returns the dimension (the constant 2).
*/
int dimension() const;
/*!
returns the point obtained by applying `t` on `p`.
*/
Point_2<Kernel> transform(const Aff_transformation_2<Kernel> &t) const;
returns a bounding box containing `p`. Note that bounding boxes
are not parameterized with whatsoever.
*/
Bbox_2 bbox() const;
/*!
returns the point obtained by applying `t` on `p`.
*/
Point_2<Kernel> transform(const Aff_transformation_2<Kernel> &t) const;
/// @}
@ -209,68 +209,68 @@ Point_2<Kernel> transform(const Aff_transformation_2<Kernel> &t) const;
/*!
returns true iff `p` is lexicographically smaller than `q`,
i.e.\ either if `p.x() < q.x()` or if `p.x() == q.x()` and
`p.y() < q.y()`.
\relates Point_2
*/
bool operator<(const Point_2<Kernel> &p,
const Point_2<Kernel> &q);
returns true iff `p` is lexicographically smaller than `q`,
i.e.\ either if `p.x() < q.x()` or if `p.x() == q.x()` and
`p.y() < q.y()`.
\relates Point_2
*/
bool operator<(const Point_2<Kernel> &p,
const Point_2<Kernel> &q);
/*!
returns true iff `p` is lexicographically greater than `q`.
\relates Point_2
*/
bool operator>(const Point_2<Kernel> &p,
const Point_2<Kernel> &q);
returns true iff `p` is lexicographically greater than `q`.
\relates Point_2
*/
bool operator>(const Point_2<Kernel> &p,
const Point_2<Kernel> &q);
/*!
returns true iff `p` is lexicographically smaller or equal to `q`.
\relates Point_2
*/
bool operator<=(const Point_2<Kernel> &p,
const Point_2<Kernel> &q);
returns true iff `p` is lexicographically smaller or equal to `q`.
\relates Point_2
*/
bool operator<=(const Point_2<Kernel> &p,
const Point_2<Kernel> &q);
/*!
returns true iff `p` is lexicographically greater or equal to `q`.
\relates Point_2
*/
bool operator>=(const Point_2<Kernel> &p,
const Point_2<Kernel> &q);
returns true iff `p` is lexicographically greater or equal to `q`.
\relates Point_2
*/
bool operator>=(const Point_2<Kernel> &p,
const Point_2<Kernel> &q);
/*!
returns the difference vector between `q` and `p`.
You can substitute `ORIGIN` for either `p` or `q`,
but not for both.
\relates Point_2
*/
Vector_2<Kernel> operator-(const Point_2<Kernel> &p,
const Point_2<Kernel> &q);
returns the difference vector between `q` and `p`.
You can substitute `ORIGIN` for either `p` or `q`,
but not for both.
\relates Point_2
*/
Vector_2<Kernel> operator-(const Point_2<Kernel> &p,
const Point_2<Kernel> &q);
/// \ingroup Kernel_operator_plus
/// \ingroup Kernel_operator_plus
/// @{
/*!
returns the point obtained by translating `p` by the
vector `v`.
\relates Point_2
*/
Point_2<Kernel> operator+(const Point_2<Kernel> &p,
const Vector_2<Kernel> &v);
returns the point obtained by translating `p` by the
vector `v`.
\relates Point_2
*/
Point_2<Kernel> operator+(const Point_2<Kernel> &p,
const Vector_2<Kernel> &v);
/// @}
/// \ingroup Kernel_operator_minus
/// \ingroup Kernel_operator_minus
/// @{
/*!
returns the point obtained by translating `p` by the
vector -`v`.
\relates Point_2
*/
Point_2<Kernel> operator-(const Point_2<Kernel> &p,
const Vector_2<Kernel> &v);
returns the point obtained by translating `p` by the
vector -`v`.
\relates Point_2
*/
Point_2<Kernel> operator-(const Point_2<Kernel> &p,
const Vector_2<Kernel> &v);
/// @}

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*!
\ingroup kernel_classes3
An object of the class `Point_3` is a point in the three-dimensional
An object of the class `Point_3` is a point in the three-dimensional
Euclidean space \f$ \E^3\f$.
Remember that `Kernel::RT` and `Kernel::FT` denote a
@ -14,7 +14,7 @@ to `NT`, and `Kernel::FT` is equal to `Quotient<NT>`.
\cgalHeading{Operators}
The following operations can be applied on points:
The following operations can be applied on points:
\cgalModels `Kernel::Point_3`
@ -23,67 +23,67 @@ template< typename Kernel >
class Point_3 {
public:
/// \name Types
/// \name Types
/// @{
/*!
An iterator for enumerating the
%Cartesian coordinates of a point.
*/
typedef unspecified_type Cartesian_const_iterator;
An iterator for enumerating the
%Cartesian coordinates of a point.
*/
typedef unspecified_type Cartesian_const_iterator;
/// @}
/// @}
/// \name Creation
/// \name Creation
/// @{
/*!
introduces a point with %Cartesian coordinates\f$ (0,0,0)\f$.
*/
Point_3(const Origin &ORIGIN);
introduces a point with %Cartesian coordinates\f$ (0,0,0)\f$.
*/
Point_3(const Origin &ORIGIN);
/*!
introduces a point `p` initialized to `(x,y,z)`.
*/
Point_3(int x, int y, int z);
introduces a point `p` initialized to `(x,y,z)`.
*/
Point_3(int x, int y, int z);
/*!
introduces a point `p` initialized to `(x,y,z)`
provided `RT` supports it.
*/
Point_3(double x, double y, double z);
provided `RT` supports it.
*/
Point_3(double x, double y, double z);
/*!
introduces a point `p` initialized to `(hx/hw,hy/hw, hz/hw)`.
\pre `hw` \f$ \neq\f$ 0.
*/
Point_3(const Kernel::RT &hx, const Kernel::RT &hy, const Kernel::RT &hz, const Kernel::RT &hw = RT(1));
introduces a point `p` initialized to `(hx/hw,hy/hw, hz/hw)`.
\pre `hw` \f$ \neq\f$ 0.
*/
Point_3(const Kernel::RT &hx, const Kernel::RT &hy, const Kernel::RT &hz, const Kernel::RT &hw = RT(1));
/*!
introduces a point `p` initialized to `(x,y,z)`.
*/
Point_3(const Kernel::FT &x, const Kernel::FT &y, const Kernel::FT &z);
introduces a point `p` initialized to `(x,y,z)`.
*/
Point_3(const Kernel::FT &x, const Kernel::FT &y, const Kernel::FT &z);
/*!
introduces a point from a weighted point.
*/
Point_3(const Kernel::Weighted_point_3 &wp);
/// @}
/// @}
/// \name Operations
/// \name Operations
/// @{
/*!
Test for equality: Two points are equal, iff their \f$ x\f$, \f$ y\f$ and \f$ z\f$
coordinates are equal.
*/
bool operator==(const Point_3<Kernel> &q) const;
Test for equality: Two points are equal, iff their \f$ x\f$, \f$ y\f$ and \f$ z\f$
coordinates are equal.
*/
bool operator==(const Point_3<Kernel> &q) const;
/*!
Test for inequality.
*/
bool operator!=(const Point_3<Kernel> &q) const;
Test for inequality.
*/
bool operator!=(const Point_3<Kernel> &q) const;
/*!
translates the point by the vector `v`.
@ -101,44 +101,44 @@ Point_3<Kernel>& operator-=(const Vector_3<Kernel> &v);
/// There are two sets of coordinate access functions, namely to the
/// homogeneous and to the %Cartesian coordinates. They can be used
/// independently from the chosen kernel model. Note that you do not
/// loose information with the homogeneous representation, because the
/// lose information with the homogeneous representation, because the
/// FieldNumberType is a quotient.
/// @{
/*!
returns the homogeneous \f$ x\f$ coordinate.
*/
Kernel::RT hx() const;
returns the homogeneous \f$ x\f$ coordinate.
*/
Kernel::RT hx() const;
/*!
returns the homogeneous \f$ y\f$ coordinate.
*/
Kernel::RT hy() const;
returns the homogeneous \f$ y\f$ coordinate.
*/
Kernel::RT hy() const;
/*!
returns the homogeneous \f$ z\f$ coordinate.
*/
Kernel::RT hz() const;
returns the homogeneous \f$ z\f$ coordinate.
*/
Kernel::RT hz() const;
/*!
returns the homogenizing coordinate.
*/
Kernel::RT hw() const;
returns the homogenizing coordinate.
*/
Kernel::RT hw() const;
/*!
returns the %Cartesian \f$ x\f$ coordinate, that is `hx()`/`hw()`.
*/
Kernel::FT x() const;
returns the %Cartesian \f$ x\f$ coordinate, that is `hx()`/`hw()`.
*/
Kernel::FT x() const;
/*!
returns the %Cartesian \f$ y\f$ coordinate, that is `hy()`/`hw()`.
*/
Kernel::FT y() const;
returns the %Cartesian \f$ y\f$ coordinate, that is `hy()`/`hw()`.
*/
Kernel::FT y() const;
/*!
returns the %Cartesian \f$ z\f$ coordinate, that is `hz()`/`hw()`.
*/
Kernel::FT z() const;
returns the %Cartesian \f$ z\f$ coordinate, that is `hz()`/`hw()`.
*/
Kernel::FT z() const;
/// @}
@ -149,106 +149,106 @@ Kernel::FT z() const;
/// @{
/*!
returns the i'th homogeneous coordinate of `p`, starting with 0.
\pre \f$ 0\leq i \leq3\f$.
*/
Kernel::RT homogeneous(int i) const;
returns the i'th homogeneous coordinate of `p`, starting with 0.
\pre \f$ 0\leq i \leq3\f$.
*/
Kernel::RT homogeneous(int i) const;
/*!
returns the i'th %Cartesian coordinate of `p`, starting with 0.
\pre \f$ 0\leq i \leq2\f$.
*/
Kernel::FT cartesian(int i) const;
returns the i'th %Cartesian coordinate of `p`, starting with 0.
\pre \f$ 0\leq i \leq2\f$.
*/
Kernel::FT cartesian(int i) const;
/*!
returns `cartesian(i)`.
\pre \f$ 0\leq i \leq2\f$.
*/
Kernel::FT operator[](int i) const;
returns `cartesian(i)`.
\pre \f$ 0\leq i \leq2\f$.
*/
Kernel::FT operator[](int i) const;
/*!
returns an iterator to the %Cartesian coordinates
of `p`, starting with the 0th coordinate.
*/
Cartesian_const_iterator cartesian_begin() const;
returns an iterator to the %Cartesian coordinates
of `p`, starting with the 0th coordinate.
*/
Cartesian_const_iterator cartesian_begin() const;
/*!
returns an off the end iterator to the %Cartesian
coordinates of `p`.
*/
Cartesian_const_iterator cartesian_end() const;
returns an off the end iterator to the %Cartesian
coordinates of `p`.
*/
Cartesian_const_iterator cartesian_end() const;
/*!
returns the dimension (the constant 3).
*/
int dimension() const;
returns the dimension (the constant 3).
*/
int dimension() const;
/*!
returns a bounding box containing `p`.
*/
Bbox_3 bbox() const;
returns a bounding box containing `p`.
*/
Bbox_3 bbox() const;
/*!
returns the point obtained by applying `t` on `p`.
*/
Point_3<Kernel> transform(const Aff_transformation_3<Kernel> &t) const;
returns the point obtained by applying `t` on `p`.
*/
Point_3<Kernel> transform(const Aff_transformation_3<Kernel> &t) const;
/// @}
}; /* end Point_3 */
/*!
returns true iff `p` is lexicographically smaller than `q`
(the lexicographical order being defined on the %Cartesian
coordinates).
\relates Point_3
*/
bool operator<(const Point_3<Kernel> &p,
const Point_3<Kernel> &q);
returns true iff `p` is lexicographically smaller than `q`
(the lexicographical order being defined on the %Cartesian
coordinates).
\relates Point_3
*/
bool operator<(const Point_3<Kernel> &p,
const Point_3<Kernel> &q);
/*!
returns true iff `p` is lexicographically greater than `q`.
\relates Point_3
*/
bool operator>(const Point_3<Kernel> &p,
const Point_3<Kernel> &q);
returns true iff `p` is lexicographically greater than `q`.
\relates Point_3
*/
bool operator>(const Point_3<Kernel> &p,
const Point_3<Kernel> &q);
/*!
returns true iff `p` is lexicographically smaller or equal to
`q`.
\relates Point_3
*/
bool operator<=(const Point_3<Kernel> &p,
const Point_3<Kernel> &q);
returns true iff `p` is lexicographically smaller or equal to
`q`.
\relates Point_3
*/
bool operator<=(const Point_3<Kernel> &p,
const Point_3<Kernel> &q);
/*!
returns true iff `p` is lexicographically greater or equal to
`q`.
\relates Point_3
*/
bool operator>=(const Point_3<Kernel> &p,
const Point_3<Kernel> &q);
returns true iff `p` is lexicographically greater or equal to
`q`.
\relates Point_3
*/
bool operator>=(const Point_3<Kernel> &p,
const Point_3<Kernel> &q);
/*!
returns the difference vector between `q` and `p`.
You can substitute `ORIGIN` for either `p` or `q`,
but not for both.
\relates Point_3
*/
Vector_3<Kernel> operator-(const Point_3<Kernel> &p,
const Point_3<Kernel> &q);
returns the difference vector between `q` and `p`.
You can substitute `ORIGIN` for either `p` or `q`,
but not for both.
\relates Point_3
*/
Vector_3<Kernel> operator-(const Point_3<Kernel> &p,
const Point_3<Kernel> &q);
/// \ingroup Kernel_operator_plus
///@{
/*!
returns the point obtained by translating `p` by the
vector `v`.
\relates Point_3
*/
Point_3<Kernel> operator+(const Point_3<Kernel> &p,
const Vector_3<Kernel> &v);
returns the point obtained by translating `p` by the
vector `v`.
\relates Point_3
*/
Point_3<Kernel> operator+(const Point_3<Kernel> &p,
const Vector_3<Kernel> &v);
/// @}
@ -257,12 +257,12 @@ const Vector_3<Kernel> &v);
///@{
/*!
returns the point obtained by translating `p` by the
vector -`v`.
\relates Point_3
*/
Point_3<Kernel> operator-(const Point_3<Kernel> &p,
const Vector_3<Kernel> &v);
returns the point obtained by translating `p` by the
vector -`v`.
\relates Point_3
*/
Point_3<Kernel> operator-(const Point_3<Kernel> &p,
const Vector_3<Kernel> &v);
/// @}

View File

@ -114,7 +114,7 @@ public:
/// There are two sets of coordinate access functions, namely to the
/// homogeneous and to the %Cartesian coordinates. They can be used
/// independently from the chosen kernel model. Note that you do not
/// loose information with the homogeneous representation, because the
/// lose information with the homogeneous representation, because the
/// `FieldNumberType` is a quotient.
/// @{

View File

@ -114,7 +114,7 @@ public:
/// There are two sets of coordinate access functions, namely to the
/// homogeneous and to the %Cartesian coordinates. They can be used
/// independently from the chosen kernel model. Note that you do not
/// loose information with the homogeneous representation, because the
/// lose information with the homogeneous representation, because the
/// `FieldNumberType` is a quotient.
/// @{