mirror of https://github.com/CGAL/cgal
More replacement in the doc of \R by \mathbb{R}
This commit is contained in:
parent
d4d9bc212b
commit
2ddd815832
|
|
@ -5,8 +5,8 @@ namespace CGAL {
|
||||||
\ingroup PkgTriangulation3TriangulationClasses
|
\ingroup PkgTriangulation3TriangulationClasses
|
||||||
|
|
||||||
Let \f$ {S}^{(w)}\f$ be a set of weighted points in \f$ \mathbb{R}^3\f$. Let
|
Let \f$ {S}^{(w)}\f$ be a set of weighted points in \f$ \mathbb{R}^3\f$. Let
|
||||||
\f$ {p}^{(w)}=(p,w_p), p\in\R^3, w_p\in\R\f$ and
|
\f$ {p}^{(w)}=(p,w_p), p\in\mathbb{R}^3, w_p\in\mathbb{R}\f$ and
|
||||||
\f$ {z}^{(w)}=(z,w_z), z\in\R^3, w_z\in\R\f$ be two weighted points.
|
\f$ {z}^{(w)}=(z,w_z), z\in\mathbb{R}^3, w_z\in\mathbb{R}\f$ be two weighted points.
|
||||||
A weighted point
|
A weighted point
|
||||||
\f$ {p}^{(w)}=(p,w_p)\f$ can also be seen as a sphere of center \f$ p\f$ and
|
\f$ {p}^{(w)}=(p,w_p)\f$ can also be seen as a sphere of center \f$ p\f$ and
|
||||||
radius \f$ \sqrt{w_p}\f$.
|
radius \f$ \sqrt{w_p}\f$.
|
||||||
|
|
|
||||||
|
|
@ -50,7 +50,7 @@ typedef unspecified_type Ray_3;
|
||||||
/*! \name
|
/*! \name
|
||||||
We use here the same notation as in Section \ref
|
We use here the same notation as in Section \ref
|
||||||
Triangulation3secclassRegulartriangulation. To simplify notation, \f$
|
Triangulation3secclassRegulartriangulation. To simplify notation, \f$
|
||||||
p\f$ will often denote in the sequel either the point \f$ p\in\R^3\f$
|
p\f$ will often denote in the sequel either the point \f$ p\in\mathbb{R}^3\f$
|
||||||
or the weighted point \f$ {p}^{(w)}=(p,w_p)\f$.
|
or the weighted point \f$ {p}^{(w)}=(p,w_p)\f$.
|
||||||
*/
|
*/
|
||||||
/// @{
|
/// @{
|
||||||
|
|
|
||||||
|
|
@ -143,8 +143,8 @@ The class `Regular_triangulation_3` implements incremental regular
|
||||||
triangulations, also known as weighted Delaunay triangulations.
|
triangulations, also known as weighted Delaunay triangulations.
|
||||||
|
|
||||||
Let \f$ {S}^{(w)}\f$ be a set of weighted points in \f$ \mathbb{R}^3\f$. Let
|
Let \f$ {S}^{(w)}\f$ be a set of weighted points in \f$ \mathbb{R}^3\f$. Let
|
||||||
\f$ {p}^{(w)}=(p,w_p), p\in\R^3, w_p\in\R\f$ and
|
\f$ {p}^{(w)}=(p,w_p), p\in\mathbb{R}^3, w_p\in\mathbb{R}\f$ and
|
||||||
\f$ {z}^{(w)}=(z,w_z), z\in\R^3, w_z\in\R\f$ be two weighted points.
|
\f$ {z}^{(w)}=(z,w_z), z\in\mathbb{R}^3, w_z\in\mathbb{R}\f$ be two weighted points.
|
||||||
A weighted point
|
A weighted point
|
||||||
\f$ {p}^{(w)}=(p,w_p)\f$ can also be seen as a sphere of center \f$ p\f$ and
|
\f$ {p}^{(w)}=(p,w_p)\f$ can also be seen as a sphere of center \f$ p\f$ and
|
||||||
radius \f$ \sqrt{w_p}\f$.
|
radius \f$ \sqrt{w_p}\f$.
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue