mirror of https://github.com/CGAL/cgal
Add some algebraic curve arrangement samples.
This commit is contained in:
parent
85d80459b1
commit
2fc1e22a23
|
|
@ -365,6 +365,10 @@ Arrangement_on_surface_2/demo/Arrangement_on_surface_2/VerticalRayShootCallback.
|
|||
Arrangement_on_surface_2/demo/Arrangement_on_surface_2/VerticalRayShootCallback.h -text
|
||||
Arrangement_on_surface_2/demo/Arrangement_on_surface_2/arrangement_2b.cpp -text
|
||||
Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/alg_circle.arr -text
|
||||
Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/cubic.arr -text
|
||||
Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/erdos_lemiscate.arr -text
|
||||
Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/infinitesimal.arr -text
|
||||
Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/algebraic/trifolium.arr -text
|
||||
Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/conic/big_circ_arcs.dat -text
|
||||
Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/conic/circles_21.dat -text
|
||||
Arrangement_on_surface_2/demo/Arrangement_on_surface_2/data/polyline/ps_circs.dat -text
|
||||
|
|
|
|||
|
|
@ -0,0 +1,72 @@
|
|||
# BEGIN ARRANGEMENT
|
||||
# number_of_vertices
|
||||
6
|
||||
# number_of_edges
|
||||
7
|
||||
# number_of_faces
|
||||
3
|
||||
# BEGIN VERTICES
|
||||
0 2 0
|
||||
0 3 0
|
||||
1 2 0
|
||||
1 3 0
|
||||
0 4 0
|
||||
1 4 0
|
||||
# END VERTICES
|
||||
# BEGIN EDGES
|
||||
4 1 0 0
|
||||
1 3 0 0
|
||||
5 2 1 0
|
||||
2 0 1 0
|
||||
4 0 1 0
|
||||
5 3 0 0
|
||||
5 4 1 1 Arc_2(Point_2(--,--, P[1(0,P[3(3,-1)])(1,P[0(0,1)])], 0,0),Point_2(--,--, P[1(0,P[3(3,-1)])(1,P[0(0,1)])], 0,1),P[1(0,P[3(3,-1)])(1,P[0(0,1)])],0,0,0,0,1)
|
||||
# END EDGES
|
||||
# BEGIN FACES
|
||||
# BEGIN FACE
|
||||
1 0
|
||||
# number_of_outer_ccbs
|
||||
0
|
||||
# number_of_inner_ccbs
|
||||
1
|
||||
# halfedges_on_inner_ccb
|
||||
6
|
||||
0 2 11 4 6 9
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
1 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
12 8 7 5
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
1 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
13 10 3 1
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# END FACES
|
||||
# END ARRANGEMENT
|
||||
# BEGIN CURVES
|
||||
# number_of_curves
|
||||
1
|
||||
P[1(0,P[3(3,-1)])(1,P[0(0,1)])]
|
||||
# induced_edges
|
||||
1
|
||||
13
|
||||
# END CURVES
|
||||
|
||||
|
|
@ -0,0 +1,219 @@
|
|||
# BEGIN ARRANGEMENT
|
||||
# number_of_vertices
|
||||
33
|
||||
# number_of_edges
|
||||
40
|
||||
# number_of_faces
|
||||
10
|
||||
# BEGIN VERTICES
|
||||
0 2 0
|
||||
0 3 0
|
||||
1 2 0
|
||||
1 3 0
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[8(0,-2)(8,1)],[-15784021086844858534866679767252604979987646373219451491819570241642953244109/14474011154664524427946373126085988481658748083205070504932198000989141204992 , -126272168694758868278933438138020839839901170985755611934556561933143625952871/115792089237316195423570985008687907853269984665640564039457584007913129639936 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[8(0,-2)(8,1)],[126272168694758868278933438138020839839901170985755611934556561933143625952871/115792089237316195423570985008687907853269984665640564039457584007913129639936 , 15784021086844858534866679767252604979987646373219451491819570241642953244109/14474011154664524427946373126085988481658748083205070504932198000989141204992 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4)
|
||||
# END VERTICES
|
||||
# BEGIN EDGES
|
||||
0 1 0 0
|
||||
1 3 0 0
|
||||
3 2 1 0
|
||||
2 0 1 0
|
||||
5 4 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[8(0,-2)(8,1)],[-15784021086844858534866679767252604979987646373219451491819570241642953244109/14474011154664524427946373126085988481658748083205070504932198000989141204992 , -126272168694758868278933438138020839839901170985755611934556561933143625952871/115792089237316195423570985008687907853269984665640564039457584007913129639936 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0,0,1,0,1)
|
||||
6 4 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[8(0,-2)(8,1)],[-15784021086844858534866679767252604979987646373219451491819570241642953244109/14474011154664524427946373126085988481658748083205070504932198000989141204992 , -126272168694758868278933438138020839839901170985755611934556561933143625952871/115792089237316195423570985008687907853269984665640564039457584007913129639936 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1,0,2,0,1)
|
||||
8 7 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0,0,1,0,1)
|
||||
9 7 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1,0,2,0,1)
|
||||
10 5 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2,1,3,0,1)
|
||||
11 6 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3,2,4,0,1)
|
||||
13 12 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4,3,5,0,1)
|
||||
14 12 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 , -21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5,3,6,0,1)
|
||||
16 15 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0,0,0,0,1)
|
||||
17 15 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1,0,1,0,1)
|
||||
17 8 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2,1,1,0,1)
|
||||
9 17 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3,2,1,0,1)
|
||||
17 10 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4,3,1,0,1)
|
||||
11 17 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5,4,1,0,1)
|
||||
17 13 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6,5,1,0,1)
|
||||
14 17 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7,6,1,0,1)
|
||||
18 17 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],8,7,1,0,1)
|
||||
19 18 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[-8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 , -16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],9,7,2,0,1)
|
||||
20 16 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0,0,0,0,1)
|
||||
17 20 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1,1,0,0,1)
|
||||
21 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2,1,1,0,1)
|
||||
22 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3,1,2,0,1)
|
||||
23 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4,1,3,0,1)
|
||||
24 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5,1,4,0,1)
|
||||
25 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6,1,5,0,1)
|
||||
26 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7,1,6,0,1)
|
||||
27 17 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],8,1,7,0,1)
|
||||
19 27 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],7),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],9,2,7,0,1)
|
||||
28 21 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0,1,0,0,1)
|
||||
22 28 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1,2,0,0,1)
|
||||
29 23 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2,3,1,0,1)
|
||||
30 24 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3,4,2,0,1)
|
||||
31 25 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],4,5,3,0,1)
|
||||
26 31 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[16319450268673956180278393125834385245884768464606339563614859364061454447284579849607923899958879162390965655337781425898124276149232001876486311535260613/107262463439540776796592199985646769019834926564739147021788491549774112240588375814414994385335227421520254865491888406830031062495572559571469192048672768 , 8159725134336978090139196562917192622942384232303169781807429682030727223642289924803961949979439581195482827668890712949062138074616000938243155767630307/53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],6),--,--,--,4),Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],3),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],5,6,3,0,1)
|
||||
32 29 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[8(0,-2)(8,1)],[126272168694758868278933438138020839839901170985755611934556561933143625952871/115792089237316195423570985008687907853269984665640564039457584007913129639936 , 15784021086844858534866679767252604979987646373219451491819570241642953244109/14474011154664524427946373126085988481658748083205070504932198000989141204992 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0,1,0,0,1)
|
||||
30 32 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[32(0,1)(8,-3482624)(16,-875495424)(24,4143972352)(32,4294967296)],[21667172327500109717451155872545794825858932913849615821594072775214039838430738091107546295177662299997920265791425214484580057263408597186313697857739347/26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192 , 5416793081875027429362788968136448706464733228462403955398518193803509959607684522776886573794415574999480066447856303621145014315852149296578424464434837/6703903964971298549787012499102923063739682910296196688861780721860882015036773488400937149083451713845015929093243025426876941405973284973216824503042048 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[8(0,-2)(8,1)],[126272168694758868278933438138020839839901170985755611934556561933143625952871/115792089237316195423570985008687907853269984665640564039457584007913129639936 , 15784021086844858534866679767252604979987646373219451491819570241642953244109/14474011154664524427946373126085988481658748083205070504932198000989141204992 ]],P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],0),--,--,--,4),P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])],1,2,0,0,1)
|
||||
# END EDGES
|
||||
# BEGIN FACES
|
||||
# BEGIN FACE
|
||||
1 0
|
||||
# number_of_outer_ccbs
|
||||
0
|
||||
# number_of_inner_ccbs
|
||||
1
|
||||
# halfedges_on_inner_ccb
|
||||
4
|
||||
0 2 4 6
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
1 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
1 7 5 3
|
||||
# number_of_inner_ccbs
|
||||
1
|
||||
# halfedges_on_inner_ccb
|
||||
36
|
||||
38 41 43 62 60 59 74 72 56 55 71 78 76 68 52 51 66 64 48 46 44 24 27 28 12 15 30 32 16 8 11 19 34 36 20 23
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
0 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
31 14 13 29
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
0 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
6
|
||||
35 18 10 9 17 33
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
0 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
39 22 21 37
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
0 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
47 26 25 45
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
0 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
63 42 40 61
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
0 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
67 50 49 65
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
0 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
75 58 57 73
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
0 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
6
|
||||
79 70 54 53 69 77
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# END FACES
|
||||
# END ARRANGEMENT
|
||||
# BEGIN CURVES
|
||||
# number_of_curves
|
||||
1
|
||||
P[16(0,P[16(8,-2)(16,1)])(2,P[14(6,56)(14,8)])(4,P[12(4,-140)(12,28)])(6,P[10(2,56)(10,56)])(8,P[8(0,-2)(8,70)])(10,P[6(6,56)])(12,P[4(4,28)])(14,P[2(2,8)])(16,P[0(0,1)])]
|
||||
# induced_edges
|
||||
36
|
||||
39 31 29 49 11 43 15 45 23 33 13 59 61 21 51 47 69 71 57 63 65 67 73 75 77 79 53 55 17 35 25 27 19 41 9 37
|
||||
# END CURVES
|
||||
|
||||
|
|
@ -0,0 +1,104 @@
|
|||
# BEGIN ARRANGEMENT
|
||||
# number_of_vertices
|
||||
9
|
||||
# number_of_edges
|
||||
12
|
||||
# number_of_faces
|
||||
5
|
||||
# BEGIN VERTICES
|
||||
0 2 0
|
||||
0 3 0
|
||||
1 2 0
|
||||
1 3 0
|
||||
0 4 0
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0),--,--,--,4)
|
||||
0 4 0
|
||||
0 4 0
|
||||
1 4 0
|
||||
# END VERTICES
|
||||
# BEGIN EDGES
|
||||
7 1 0 0
|
||||
1 3 0 0
|
||||
8 2 1 0
|
||||
2 0 1 0
|
||||
4 0 1 0
|
||||
5 4 1 1 Arc_2(Point_2(--,--, P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])], 0,0),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0),--,--,--,4),P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0,0,0,0,1)
|
||||
6 4 1 0
|
||||
5 6 1 1 Arc_2(Point_2(--,--, P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])], 1,0),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0),--,--,--,4),P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],1,1,0,0,1)
|
||||
7 6 1 0
|
||||
5 7 1 1 Arc_2(Point_2(--,--, P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])], 2,0),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0),--,--,--,4),P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],2,2,0,0,1)
|
||||
8 3 0 0
|
||||
8 5 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0),--,--,--,4),Point_2(--,--, P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])], 0,1),P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])],0,0,0,0,1)
|
||||
# END EDGES
|
||||
# BEGIN FACES
|
||||
# BEGIN FACE
|
||||
1 0
|
||||
# number_of_outer_ccbs
|
||||
0
|
||||
# number_of_inner_ccbs
|
||||
1
|
||||
# halfedges_on_inner_ccb
|
||||
8
|
||||
0 2 21 4 6 9 13 17
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
1 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
3
|
||||
14 12 11
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
1 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
3
|
||||
18 16 15
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
1 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
5
|
||||
22 10 8 7 5
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
1 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
5
|
||||
23 20 3 1 19
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# END FACES
|
||||
# END ARRANGEMENT
|
||||
# BEGIN CURVES
|
||||
# number_of_curves
|
||||
1
|
||||
P[7(0,P[6(6,-8)])(1,P[3(3,16)])(2,P[5(5,-8)])(3,P[2(2,8)])(5,P[1(1,-2)])(7,P[0(0,1)])]
|
||||
# induced_edges
|
||||
4
|
||||
23 19 15 11
|
||||
# END CURVES
|
||||
|
||||
|
|
@ -0,0 +1,116 @@
|
|||
# BEGIN ARRANGEMENT
|
||||
# number_of_vertices
|
||||
14
|
||||
# number_of_edges
|
||||
16
|
||||
# number_of_faces
|
||||
5
|
||||
# BEGIN VERTICES
|
||||
0 2 0
|
||||
0 3 0
|
||||
1 2 0
|
||||
1 3 0
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-598955696151088247247054605302853527327/680564733841876926926749214863536422912 , -299477848075544123623527302651426763663/340282366920938463463374607431768211456 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2),--,--,--,4)
|
||||
4 4 1 Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[299477848075544123623527302651426763663/340282366920938463463374607431768211456 , 598955696151088247247054605302853527327/680564733841876926926749214863536422912 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4)
|
||||
# END VERTICES
|
||||
# BEGIN EDGES
|
||||
0 1 0 0
|
||||
1 3 0 0
|
||||
3 2 1 0
|
||||
2 0 1 0
|
||||
5 4 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-598955696151088247247054605302853527327/680564733841876926926749214863536422912 , -299477848075544123623527302651426763663/340282366920938463463374607431768211456 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0,0,0,0,1)
|
||||
6 4 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-598955696151088247247054605302853527327/680564733841876926926749214863536422912 , -299477848075544123623527302651426763663/340282366920938463463374607431768211456 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1,0,1,0,1)
|
||||
7 5 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0,0,0,0,1)
|
||||
6 7 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1,1,0,0,1)
|
||||
8 7 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2,2,0,0,1)
|
||||
9 8 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[-27228038400421048309/147573952589676412928 , -6807009600105262077/36893488147419103232 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2),--,--,--,4),Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],3,2,1,0,1)
|
||||
10 7 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0,0,0,0,1)
|
||||
11 7 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1,0,1,0,1)
|
||||
12 7 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2,0,2,0,1)
|
||||
9 12 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[1(1,1)],[0/1 , 0/1 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],2),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],3,1,2,0,1)
|
||||
13 10 1 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[299477848075544123623527302651426763663/340282366920938463463374607431768211456 , 598955696151088247247054605302853527327/680564733841876926926749214863536422912 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0,0,0,0,1)
|
||||
11 13 0 1 Arc_2(Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[6807009600105262077/36893488147419103232 , 27228038400421048309/147573952589676412928 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1),--,--,--,4),Point_2( Algebraic_real_xca_2([P[4(0,27)(2,-828)(4,1024)],[299477848075544123623527302651426763663/340282366920938463463374607431768211456 , 598955696151088247247054605302853527327/680564733841876926926749214863536422912 ]],P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],0),--,--,--,4),P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])],1,1,0,0,1)
|
||||
# END EDGES
|
||||
# BEGIN FACES
|
||||
# BEGIN FACE
|
||||
1 0
|
||||
# number_of_outer_ccbs
|
||||
0
|
||||
# number_of_inner_ccbs
|
||||
1
|
||||
# halfedges_on_inner_ccb
|
||||
4
|
||||
0 2 4 6
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
1 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
1 7 5 3
|
||||
# number_of_inner_ccbs
|
||||
1
|
||||
# halfedges_on_inner_ccb
|
||||
12
|
||||
14 17 19 26 24 23 30 28 20 12 8 11
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
0 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
15 10 9 13
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
0 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
27 18 16 25
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# BEGIN FACE
|
||||
0 1
|
||||
# number_of_outer_ccbs
|
||||
1
|
||||
# halfedges_on_outer_ccb
|
||||
4
|
||||
31 22 21 29
|
||||
# number_of_inner_ccbs
|
||||
0
|
||||
# number_of_isolated_vertices
|
||||
0
|
||||
# END FACE
|
||||
# END FACES
|
||||
# END ARRANGEMENT
|
||||
# BEGIN CURVES
|
||||
# number_of_curves
|
||||
1
|
||||
P[4(0,P[4(4,1)])(1,P[2(2,3)])(2,P[2(2,2)])(3,P[0(0,-1)])(4,P[0(0,1)])]
|
||||
# induced_edges
|
||||
12
|
||||
11 13 15 17 19 21 9 23 25 27 29 31
|
||||
# END CURVES
|
||||
|
||||
Loading…
Reference in New Issue