reorder things

This commit is contained in:
Jane Tournois 2016-09-06 14:07:45 +02:00
parent db37ec56c2
commit 358119f590
1 changed files with 83 additions and 85 deletions

View File

@ -7993,91 +7993,6 @@ public:
}; /* end Kernel::HasOn_3 */
/*!
\ingroup PkgKernel23ConceptsFunctionObjects
\cgalConcept
\cgalRefines `AdaptableFunctor` (with five arguments)
\sa `CGAL::Weighted_point_3<Kernel>`
\sa `ComputePowerProduct_3` for the definition of orthogonal.
*/
class PowerSideOfBoundedPowerSphere_3 {
public:
/// \name Operations
/// A model of this concept must provide:
/// @{
/*!
returns the sign of the power test of the last weighted point
with respect to the smallest sphere orthogonal to the others.
Let \f$ {z(p,q,r,s)}^{(w)}\f$ be the power sphere of the weighted points
\f$ (p,q,r,s)\f$. Returns
- `ON_BOUNDARY` if `t` is orthogonal to
\f$ {z(p,q,r,s)}^{(w)}\f$,
- `ON_UNBOUNDED_SIDE` if `t` lies outside the bounded sphere of
center \f$ z(p,q,r,s)\f$ and radius \f$ \sqrt{ w_{z(p,q,r,s)}^2 + w_t^2 }\f$
(which is equivalent to \f$ \Pi({t}^{(w)},{z(p,q,r,s)}^{(w)} >0\f$)),
- `ON_BOUNDED_SIDE` if `t` lies inside this oriented sphere.
\pre `p, q, r, s` are not coplanar.
If all the points have a weight equal to 0, then
`power_side_of_bounded_power_sphere_3(p,q,r,s,t)` == `side_of_bounded_sphere(p,q,r,s,t)`.
*/
CGAL::Bounded_side
operator()(const Kernel::Weighted_point_3 & p,
const Kernel::Weighted_point_3 & q,
const Kernel::Weighted_point_3 & r,
const Kernel::Weighted_point_3 & s,
const Kernel::Weighted_point_3 & t);
/*!
Analogous to the previous method, for coplanar points,
with the power circle \f$ {z(p,q,r)}^{(w)}\f$.
\pre `p, q, r` are not collinear.
If all the points have a weight equal to 0, then
`power_side_of_bounded_power_sphere_3(p,q,r,t)` == `side_of_bounded_sphere(p,q,r,t)`.
*/
CGAL::Bounded_side
operator()(const Kernel::Weighted_point_3 & p,
const Kernel::Weighted_point_3 & q,
const Kernel::Weighted_point_3 & r,
const Kernel::Weighted_point_3 & t);
/*!
which is the same for collinear points, where \f$ {z(p,q)}^{(w)}\f$ is the
power segment of `p` and `q`.
\pre `p` and `q` have different bare points.
If all points have a weight equal to 0, then
`power_side_of_bounded_power_sphere_3(p,q,t)` gives the same answer as the kernel predicate
`s(p,q).has_on(t)` would give, where `s(p,q)` denotes the
segment with endpoints `p` and `q`.
*/
CGAL::Bounded_side
operator()(const Kernel::Weighted_point_3 & p,
const Kernel::Weighted_point_3 & q,
const Kernel::Weighted_point_3 & t);
/*!
which is the same for equal points, that is when `p` and `q`
have equal coordinates, then it returns the comparison of the weights
(`ON_BOUNDED_SIDE` when `q` is heavier than `p`).
\pre `p` and `q` have equal bare points.
*/
CGAL::Bounded_side
operator()(const Kernel::Weighted_point_3 & p,
const Kernel::Weighted_point_3 & q);
/// @}
}; /* end Kernel::Intersect_2 */
/*!
\ingroup PkgKernel23ConceptsFunctionObjects
\cgalConcept
@ -8790,6 +8705,89 @@ public:
}; /* end Kernel::LessZ_3 */
/*!
\ingroup PkgKernel23ConceptsFunctionObjects
\cgalConcept
\cgalRefines `AdaptableFunctor` (with five arguments)
\sa `CGAL::Weighted_point_3<Kernel>`
\sa `ComputePowerProduct_3` for the definition of orthogonal.
*/
class PowerSideOfBoundedPowerSphere_3 {
public:
/// \name Operations
/// A model of this concept must provide:
/// @{
/*!
returns the sign of the power test of the last weighted point
with respect to the smallest sphere orthogonal to the others.
Let \f$ {z(p,q,r,s)}^{(w)}\f$ be the power sphere of the weighted points
\f$ (p,q,r,s)\f$. Returns
- `ON_BOUNDARY` if `t` is orthogonal to
\f$ {z(p,q,r,s)}^{(w)}\f$,
- `ON_UNBOUNDED_SIDE` if `t` lies outside the bounded sphere of
center \f$ z(p,q,r,s)\f$ and radius \f$ \sqrt{ w_{z(p,q,r,s)}^2 + w_t^2 }\f$
(which is equivalent to \f$ \Pi({t}^{(w)},{z(p,q,r,s)}^{(w)} >0\f$)),
- `ON_BOUNDED_SIDE` if `t` lies inside this oriented sphere.
\pre `p, q, r, s` are not coplanar.
If all the points have a weight equal to 0, then
`power_side_of_bounded_power_sphere_3(p,q,r,s,t)` == `side_of_bounded_sphere(p,q,r,s,t)`.
*/
CGAL::Bounded_side
operator()(const Kernel::Weighted_point_3 & p,
const Kernel::Weighted_point_3 & q,
const Kernel::Weighted_point_3 & r,
const Kernel::Weighted_point_3 & s,
const Kernel::Weighted_point_3 & t);
/*!
Analogous to the previous method, for coplanar points,
with the power circle \f$ {z(p,q,r)}^{(w)}\f$.
\pre `p, q, r` are not collinear.
If all the points have a weight equal to 0, then
`power_side_of_bounded_power_sphere_3(p,q,r,t)` == `side_of_bounded_sphere(p,q,r,t)`.
*/
CGAL::Bounded_side
operator()(const Kernel::Weighted_point_3 & p,
const Kernel::Weighted_point_3 & q,
const Kernel::Weighted_point_3 & r,
const Kernel::Weighted_point_3 & t);
/*!
which is the same for collinear points, where \f$ {z(p,q)}^{(w)}\f$ is the
power segment of `p` and `q`.
\pre `p` and `q` have different bare points.
If all points have a weight equal to 0, then
`power_side_of_bounded_power_sphere_3(p,q,t)` gives the same answer as the kernel predicate
`s(p,q).has_on(t)` would give, where `s(p,q)` denotes the
segment with endpoints `p` and `q`.
*/
CGAL::Bounded_side
operator()(const Kernel::Weighted_point_3 & p,
const Kernel::Weighted_point_3 & q,
const Kernel::Weighted_point_3 & t);
/*!
which is the same for equal points, that is when `p` and `q`
have equal coordinates, then it returns the comparison of the weights
(`ON_BOUNDED_SIDE` when `q` is heavier than `p`).
\pre `p` and `q` have equal bare points.
*/
CGAL::Bounded_side
operator()(const Kernel::Weighted_point_3 & p,
const Kernel::Weighted_point_3 & q);
/// @}
}; /* end Kernel::PowerSideOfBoundedPowerSphere_3 */
/*!
\ingroup PkgKernel23ConceptsFunctionObjects