mirror of https://github.com/CGAL/cgal
added the qualifier CGAL:: in various places
This commit is contained in:
parent
ae38411999
commit
7060c4559b
|
|
@ -364,8 +364,8 @@ not.
|
|||
We want to determine the sign of the distance of the left-most
|
||||
circle from the one in the middle. The almost horizontal curve is
|
||||
the bisector of the top-most and bottom-most circles. Left: the
|
||||
predicate returns \ccc{NEGATIVE}. Right: the predicate returns
|
||||
\ccc{POSITIVE}.}
|
||||
predicate returns \ccc{CGAL::NEGATIVE}. Right: the predicate
|
||||
returns \ccc{CGAL::POSITIVE}.}
|
||||
\begin{ccHtmlOnly}
|
||||
</font>
|
||||
\end{ccHtmlOnly}
|
||||
|
|
@ -506,12 +506,13 @@ inexact predicates.
|
|||
Since using an exact number type may be too slow, the
|
||||
\ccc{Apollonius_graph_traits_2<K,Method_tag>} class is designed to
|
||||
support the dynamic filtering of \cgal{} through the
|
||||
\ccc{Filtered_exact<CT,ET>} mechanism. In particular if \ccc{CT} is an
|
||||
inexact number type that supports the operations denoted by the tag
|
||||
\ccc{Method_tag} and \ccc{ET} is an exact number type for these
|
||||
operations, then kernel with number type \ccc{Filtered_exact<CT,ET>}
|
||||
will yield exact predicates for the Apollonius graph traits. To give a
|
||||
concrete example, \ccc{Filtered_exact<double,MP_Float>} with
|
||||
\ccc{CGAL::Filtered_exact<CT,ET>} mechanism. In particular if \ccc{CT}
|
||||
is an inexact number type that supports the operations denoted by the
|
||||
tag \ccc{Method_tag} and \ccc{ET} is an exact number type for these
|
||||
operations, then kernel with number type
|
||||
\ccc{CGAL::Filtered_exact<CT,ET>} will yield exact predicates for the
|
||||
Apollonius graph traits. To give a concrete example,
|
||||
\ccc{CGAL::Filtered_exact<double,CGAL::MP_Float>} with
|
||||
\ccc{CGAL::Ring_tag} will produce exact predicates.
|
||||
|
||||
Another possibility for fast and exact predicate evalutation is to use
|
||||
|
|
|
|||
|
|
@ -364,8 +364,8 @@ not.
|
|||
We want to determine the sign of the distance of the left-most
|
||||
circle from the one in the middle. The almost horizontal curve is
|
||||
the bisector of the top-most and bottom-most circles. Left: the
|
||||
predicate returns \ccc{NEGATIVE}. Right: the predicate returns
|
||||
\ccc{POSITIVE}.}
|
||||
predicate returns \ccc{CGAL::NEGATIVE}. Right: the predicate
|
||||
returns \ccc{CGAL::POSITIVE}.}
|
||||
\begin{ccHtmlOnly}
|
||||
</font>
|
||||
\end{ccHtmlOnly}
|
||||
|
|
@ -506,12 +506,13 @@ inexact predicates.
|
|||
Since using an exact number type may be too slow, the
|
||||
\ccc{Apollonius_graph_traits_2<K,Method_tag>} class is designed to
|
||||
support the dynamic filtering of \cgal{} through the
|
||||
\ccc{Filtered_exact<CT,ET>} mechanism. In particular if \ccc{CT} is an
|
||||
inexact number type that supports the operations denoted by the tag
|
||||
\ccc{Method_tag} and \ccc{ET} is an exact number type for these
|
||||
operations, then kernel with number type \ccc{Filtered_exact<CT,ET>}
|
||||
will yield exact predicates for the Apollonius graph traits. To give a
|
||||
concrete example, \ccc{Filtered_exact<double,MP_Float>} with
|
||||
\ccc{CGAL::Filtered_exact<CT,ET>} mechanism. In particular if \ccc{CT}
|
||||
is an inexact number type that supports the operations denoted by the
|
||||
tag \ccc{Method_tag} and \ccc{ET} is an exact number type for these
|
||||
operations, then kernel with number type
|
||||
\ccc{CGAL::Filtered_exact<CT,ET>} will yield exact predicates for the
|
||||
Apollonius graph traits. To give a concrete example,
|
||||
\ccc{CGAL::Filtered_exact<double,CGAL::MP_Float>} with
|
||||
\ccc{CGAL::Ring_tag} will produce exact predicates.
|
||||
|
||||
Another possibility for fast and exact predicate evalutation is to use
|
||||
|
|
|
|||
Loading…
Reference in New Issue