mirror of https://github.com/CGAL/cgal
renamed predicate 'Is_hyperbolic' to 'Is_Delaunay_hyperbolic'
This commit is contained in:
parent
d9dd3d54e5
commit
8287d55a98
|
|
@ -86,7 +86,7 @@ public:
|
||||||
|
|
||||||
|
|
||||||
typedef typename Geom_traits::Side_of_hyperbolic_triangle_2 Side_of_hyperbolic_triangle;
|
typedef typename Geom_traits::Side_of_hyperbolic_triangle_2 Side_of_hyperbolic_triangle;
|
||||||
typedef typename Geom_traits::Is_hyperbolic Is_hyperbolic;
|
typedef typename Geom_traits::Is_Delaunay_hyperbolic Is_Delaunay_hyperbolic;
|
||||||
|
|
||||||
Hyperbolic_Delaunay_triangulation_2(const Geom_traits& gt = Geom_traits())
|
Hyperbolic_Delaunay_triangulation_2(const Geom_traits& gt = Geom_traits())
|
||||||
: Delaunay_triangulation_2<Gt,Tds>(gt) {}
|
: Delaunay_triangulation_2<Gt,Tds>(gt) {}
|
||||||
|
|
@ -389,7 +389,7 @@ private:
|
||||||
|
|
||||||
bool operator ()(const Face_handle& f) const
|
bool operator ()(const Face_handle& f) const
|
||||||
{
|
{
|
||||||
typedef typename Gt::Is_hyperbolic Is_hyperbolic;
|
typedef typename Gt::Is_Delaunay_hyperbolic Is_Delaunay_hyperbolic;
|
||||||
|
|
||||||
if(_tr.has_infinite_vertex(f)) {
|
if(_tr.has_infinite_vertex(f)) {
|
||||||
return false;
|
return false;
|
||||||
|
|
@ -400,8 +400,8 @@ private:
|
||||||
Point p2 = f->vertex(2)->point();
|
Point p2 = f->vertex(2)->point();
|
||||||
int ind = 0;
|
int ind = 0;
|
||||||
|
|
||||||
Is_hyperbolic is_hyperbolic = _tr.geom_traits().is_hyperbolic_object();
|
Is_Delaunay_hyperbolic is_Delaunay_hyperbolic = _tr.geom_traits().is_Delaunay_hyperbolic_object();
|
||||||
if(is_hyperbolic(p0, p1, p2, ind) == false) {
|
if(is_Delaunay_hyperbolic(p0, p1, p2, ind) == false) {
|
||||||
f->set_finite_non_hyperbolic(true); // MT should not be necessary, return true should be enough (?)
|
f->set_finite_non_hyperbolic(true); // MT should not be necessary, return true should be enough (?)
|
||||||
f->set_non_hyperbolic_edge(ind);
|
f->set_non_hyperbolic_edge(ind);
|
||||||
return true;
|
return true;
|
||||||
|
|
@ -674,7 +674,7 @@ public:
|
||||||
Point p = fh->vertex(0)->point();
|
Point p = fh->vertex(0)->point();
|
||||||
Point q = fh->vertex(1)->point();
|
Point q = fh->vertex(1)->point();
|
||||||
Point r = fh->vertex(2)->point();
|
Point r = fh->vertex(2)->point();
|
||||||
if (Is_hyperbolic()(p, q, r)) {
|
if (Is_Delaunay_hyperbolic()(p, q, r)) {
|
||||||
Bounded_side side = Side_of_hyperbolic_triangle()(p, q, r, query, li);
|
Bounded_side side = Side_of_hyperbolic_triangle()(p, q, r, query, li);
|
||||||
if (side == ON_BOUNDARY) {
|
if (side == ON_BOUNDARY) {
|
||||||
lt = EDGE;
|
lt = EDGE;
|
||||||
|
|
@ -692,7 +692,7 @@ public:
|
||||||
p = fh->vertex(ccw(li))->point();
|
p = fh->vertex(ccw(li))->point();
|
||||||
q = fh->mirror_vertex(li)->point();
|
q = fh->mirror_vertex(li)->point();
|
||||||
r = fh->vertex(cw(li))->point();
|
r = fh->vertex(cw(li))->point();
|
||||||
if (Is_hyperbolic()(p, q, r)) {
|
if (Is_Delaunay_hyperbolic()(p, q, r)) {
|
||||||
Bounded_side side = Side_of_hyperbolic_triangle()(p, q, r, query, li);
|
Bounded_side side = Side_of_hyperbolic_triangle()(p, q, r, query, li);
|
||||||
if (side == ON_BOUNDARY) {
|
if (side == ON_BOUNDARY) {
|
||||||
lt = EDGE;
|
lt = EDGE;
|
||||||
|
|
@ -714,7 +714,7 @@ public:
|
||||||
Point p = fh->vertex(0)->point();
|
Point p = fh->vertex(0)->point();
|
||||||
Point q = fh->vertex(1)->point();
|
Point q = fh->vertex(1)->point();
|
||||||
Point r = fh->vertex(2)->point();
|
Point r = fh->vertex(2)->point();
|
||||||
if (!Is_hyperbolic()(p, q, r)) {
|
if (!Is_Delaunay_hyperbolic()(p, q, r)) {
|
||||||
lt = OUTSIDE_CONVEX_HULL;
|
lt = OUTSIDE_CONVEX_HULL;
|
||||||
return Face_handle();
|
return Face_handle();
|
||||||
}
|
}
|
||||||
|
|
@ -731,7 +731,7 @@ public:
|
||||||
// Here, the point lies in a face that is a neighbor to fh
|
// Here, the point lies in a face that is a neighbor to fh
|
||||||
for (int i = 0; i < 3; i++) {
|
for (int i = 0; i < 3; i++) {
|
||||||
Face_handle nfh = fh->neighbor(i);
|
Face_handle nfh = fh->neighbor(i);
|
||||||
if (Is_hyperbolic()(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point())) {
|
if (Is_Delaunay_hyperbolic()(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point())) {
|
||||||
Bounded_side nside = Side_of_hyperbolic_triangle()(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point(), query, li);
|
Bounded_side nside = Side_of_hyperbolic_triangle()(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point(), query, li);
|
||||||
if (nside == ON_BOUNDED_SIDE) {
|
if (nside == ON_BOUNDED_SIDE) {
|
||||||
lt = FACE;
|
lt = FACE;
|
||||||
|
|
|
||||||
|
|
@ -378,7 +378,7 @@ public:
|
||||||
Bounded_side operator()(Point_2 p, Point_2 q, Point_2 r, Point_2 t, int& li) const {
|
Bounded_side operator()(Point_2 p, Point_2 q, Point_2 r, Point_2 t, int& li) const {
|
||||||
|
|
||||||
// The triangle (p,q,r) cannot be hyperbolic! This case should be handled at triangulation level
|
// The triangle (p,q,r) cannot be hyperbolic! This case should be handled at triangulation level
|
||||||
CGAL_triangulation_precondition(Is_hyperbolic()(p, q, r));
|
CGAL_triangulation_precondition(Is_Delaunay_hyperbolic()(p, q, r));
|
||||||
|
|
||||||
// Point p is assumed to be at index 0, q at index 1 and r at index 2 in the face.
|
// Point p is assumed to be at index 0, q at index 1 and r at index 2 in the face.
|
||||||
li = -1;
|
li = -1;
|
||||||
|
|
@ -461,7 +461,7 @@ public:
|
||||||
|
|
||||||
|
|
||||||
// For details see the JoCG paper (5:56-85, 2014)
|
// For details see the JoCG paper (5:56-85, 2014)
|
||||||
class Is_hyperbolic
|
class Is_Delaunay_hyperbolic
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
typedef typename R::Vector_3 Vector_3;
|
typedef typename R::Vector_3 Vector_3;
|
||||||
|
|
@ -528,11 +528,11 @@ public:
|
||||||
|
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
}; // end Is_hyperbolic
|
}; // end Is_Delaunay_hyperbolic
|
||||||
|
|
||||||
Is_hyperbolic
|
Is_Delaunay_hyperbolic
|
||||||
is_hyperbolic_object() const
|
is_Delaunay_hyperbolic_object() const
|
||||||
{ return Is_hyperbolic(); }
|
{ return Is_Delaunay_hyperbolic(); }
|
||||||
|
|
||||||
// do not document
|
// do not document
|
||||||
// constructs the Euclidean circle or line supporting the hyperbolic
|
// constructs the Euclidean circle or line supporting the hyperbolic
|
||||||
|
|
|
||||||
|
|
@ -408,7 +408,7 @@ public:
|
||||||
{ return Construct_Euclidean_bisector_2(); }
|
{ return Construct_Euclidean_bisector_2(); }
|
||||||
|
|
||||||
// For details see the JoCG paper (5:56-85, 2014)
|
// For details see the JoCG paper (5:56-85, 2014)
|
||||||
class Is_hyperbolic
|
class Is_Delaunay_hyperbolic
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
typedef typename Kernel::Vector_3 Vector_3;
|
typedef typename Kernel::Vector_3 Vector_3;
|
||||||
|
|
@ -475,11 +475,11 @@ public:
|
||||||
|
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
}; // end Is_hyperbolic
|
}; // end Is_Delaunay_hyperbolic
|
||||||
|
|
||||||
Is_hyperbolic
|
Is_Delaunay_hyperbolic
|
||||||
is_hyperbolic_object() const
|
is_Delaunay_hyperbolic_object() const
|
||||||
{ return Is_hyperbolic(); }
|
{ return Is_Delaunay_hyperbolic(); }
|
||||||
|
|
||||||
// do not document
|
// do not document
|
||||||
// constructs the Euclidean circle or line supporting the hyperbolic
|
// constructs the Euclidean circle or line supporting the hyperbolic
|
||||||
|
|
@ -669,7 +669,7 @@ public:
|
||||||
Bounded_side operator()(Point_2 p, Point_2 q, Point_2 r, Point_2 t, int& li) const {
|
Bounded_side operator()(Point_2 p, Point_2 q, Point_2 r, Point_2 t, int& li) const {
|
||||||
|
|
||||||
// The triangle (p,q,r) cannot be hyperbolic! This case should be handled at triangulation level
|
// The triangle (p,q,r) cannot be hyperbolic! This case should be handled at triangulation level
|
||||||
CGAL_triangulation_precondition(Is_hyperbolic()(p, q, r));
|
CGAL_triangulation_precondition(Is_Delaunay_hyperbolic()(p, q, r));
|
||||||
|
|
||||||
// Point p is assumed to be at index 0, q at index 1 and r at index 2 in the face.
|
// Point p is assumed to be at index 0, q at index 1 and r at index 2 in the face.
|
||||||
li = -1;
|
li = -1;
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue