renamed predicate 'Is_hyperbolic' to 'Is_Delaunay_hyperbolic'

This commit is contained in:
Iordan Iordanov 2018-08-08 21:26:18 +02:00
parent d9dd3d54e5
commit 8287d55a98
3 changed files with 20 additions and 20 deletions

View File

@ -86,7 +86,7 @@ public:
typedef typename Geom_traits::Side_of_hyperbolic_triangle_2 Side_of_hyperbolic_triangle; typedef typename Geom_traits::Side_of_hyperbolic_triangle_2 Side_of_hyperbolic_triangle;
typedef typename Geom_traits::Is_hyperbolic Is_hyperbolic; typedef typename Geom_traits::Is_Delaunay_hyperbolic Is_Delaunay_hyperbolic;
Hyperbolic_Delaunay_triangulation_2(const Geom_traits& gt = Geom_traits()) Hyperbolic_Delaunay_triangulation_2(const Geom_traits& gt = Geom_traits())
: Delaunay_triangulation_2<Gt,Tds>(gt) {} : Delaunay_triangulation_2<Gt,Tds>(gt) {}
@ -389,7 +389,7 @@ private:
bool operator ()(const Face_handle& f) const bool operator ()(const Face_handle& f) const
{ {
typedef typename Gt::Is_hyperbolic Is_hyperbolic; typedef typename Gt::Is_Delaunay_hyperbolic Is_Delaunay_hyperbolic;
if(_tr.has_infinite_vertex(f)) { if(_tr.has_infinite_vertex(f)) {
return false; return false;
@ -400,8 +400,8 @@ private:
Point p2 = f->vertex(2)->point(); Point p2 = f->vertex(2)->point();
int ind = 0; int ind = 0;
Is_hyperbolic is_hyperbolic = _tr.geom_traits().is_hyperbolic_object(); Is_Delaunay_hyperbolic is_Delaunay_hyperbolic = _tr.geom_traits().is_Delaunay_hyperbolic_object();
if(is_hyperbolic(p0, p1, p2, ind) == false) { if(is_Delaunay_hyperbolic(p0, p1, p2, ind) == false) {
f->set_finite_non_hyperbolic(true); // MT should not be necessary, return true should be enough (?) f->set_finite_non_hyperbolic(true); // MT should not be necessary, return true should be enough (?)
f->set_non_hyperbolic_edge(ind); f->set_non_hyperbolic_edge(ind);
return true; return true;
@ -674,7 +674,7 @@ public:
Point p = fh->vertex(0)->point(); Point p = fh->vertex(0)->point();
Point q = fh->vertex(1)->point(); Point q = fh->vertex(1)->point();
Point r = fh->vertex(2)->point(); Point r = fh->vertex(2)->point();
if (Is_hyperbolic()(p, q, r)) { if (Is_Delaunay_hyperbolic()(p, q, r)) {
Bounded_side side = Side_of_hyperbolic_triangle()(p, q, r, query, li); Bounded_side side = Side_of_hyperbolic_triangle()(p, q, r, query, li);
if (side == ON_BOUNDARY) { if (side == ON_BOUNDARY) {
lt = EDGE; lt = EDGE;
@ -692,7 +692,7 @@ public:
p = fh->vertex(ccw(li))->point(); p = fh->vertex(ccw(li))->point();
q = fh->mirror_vertex(li)->point(); q = fh->mirror_vertex(li)->point();
r = fh->vertex(cw(li))->point(); r = fh->vertex(cw(li))->point();
if (Is_hyperbolic()(p, q, r)) { if (Is_Delaunay_hyperbolic()(p, q, r)) {
Bounded_side side = Side_of_hyperbolic_triangle()(p, q, r, query, li); Bounded_side side = Side_of_hyperbolic_triangle()(p, q, r, query, li);
if (side == ON_BOUNDARY) { if (side == ON_BOUNDARY) {
lt = EDGE; lt = EDGE;
@ -714,7 +714,7 @@ public:
Point p = fh->vertex(0)->point(); Point p = fh->vertex(0)->point();
Point q = fh->vertex(1)->point(); Point q = fh->vertex(1)->point();
Point r = fh->vertex(2)->point(); Point r = fh->vertex(2)->point();
if (!Is_hyperbolic()(p, q, r)) { if (!Is_Delaunay_hyperbolic()(p, q, r)) {
lt = OUTSIDE_CONVEX_HULL; lt = OUTSIDE_CONVEX_HULL;
return Face_handle(); return Face_handle();
} }
@ -731,7 +731,7 @@ public:
// Here, the point lies in a face that is a neighbor to fh // Here, the point lies in a face that is a neighbor to fh
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
Face_handle nfh = fh->neighbor(i); Face_handle nfh = fh->neighbor(i);
if (Is_hyperbolic()(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point())) { if (Is_Delaunay_hyperbolic()(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point())) {
Bounded_side nside = Side_of_hyperbolic_triangle()(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point(), query, li); Bounded_side nside = Side_of_hyperbolic_triangle()(nfh->vertex(0)->point(),nfh->vertex(1)->point(),nfh->vertex(2)->point(), query, li);
if (nside == ON_BOUNDED_SIDE) { if (nside == ON_BOUNDED_SIDE) {
lt = FACE; lt = FACE;

View File

@ -378,7 +378,7 @@ public:
Bounded_side operator()(Point_2 p, Point_2 q, Point_2 r, Point_2 t, int& li) const { Bounded_side operator()(Point_2 p, Point_2 q, Point_2 r, Point_2 t, int& li) const {
// The triangle (p,q,r) cannot be hyperbolic! This case should be handled at triangulation level // The triangle (p,q,r) cannot be hyperbolic! This case should be handled at triangulation level
CGAL_triangulation_precondition(Is_hyperbolic()(p, q, r)); CGAL_triangulation_precondition(Is_Delaunay_hyperbolic()(p, q, r));
// Point p is assumed to be at index 0, q at index 1 and r at index 2 in the face. // Point p is assumed to be at index 0, q at index 1 and r at index 2 in the face.
li = -1; li = -1;
@ -461,7 +461,7 @@ public:
// For details see the JoCG paper (5:56-85, 2014) // For details see the JoCG paper (5:56-85, 2014)
class Is_hyperbolic class Is_Delaunay_hyperbolic
{ {
public: public:
typedef typename R::Vector_3 Vector_3; typedef typename R::Vector_3 Vector_3;
@ -528,11 +528,11 @@ public:
return 1; return 1;
} }
}; // end Is_hyperbolic }; // end Is_Delaunay_hyperbolic
Is_hyperbolic Is_Delaunay_hyperbolic
is_hyperbolic_object() const is_Delaunay_hyperbolic_object() const
{ return Is_hyperbolic(); } { return Is_Delaunay_hyperbolic(); }
// do not document // do not document
// constructs the Euclidean circle or line supporting the hyperbolic // constructs the Euclidean circle or line supporting the hyperbolic

View File

@ -408,7 +408,7 @@ public:
{ return Construct_Euclidean_bisector_2(); } { return Construct_Euclidean_bisector_2(); }
// For details see the JoCG paper (5:56-85, 2014) // For details see the JoCG paper (5:56-85, 2014)
class Is_hyperbolic class Is_Delaunay_hyperbolic
{ {
public: public:
typedef typename Kernel::Vector_3 Vector_3; typedef typename Kernel::Vector_3 Vector_3;
@ -475,11 +475,11 @@ public:
return 1; return 1;
} }
}; // end Is_hyperbolic }; // end Is_Delaunay_hyperbolic
Is_hyperbolic Is_Delaunay_hyperbolic
is_hyperbolic_object() const is_Delaunay_hyperbolic_object() const
{ return Is_hyperbolic(); } { return Is_Delaunay_hyperbolic(); }
// do not document // do not document
// constructs the Euclidean circle or line supporting the hyperbolic // constructs the Euclidean circle or line supporting the hyperbolic
@ -669,7 +669,7 @@ public:
Bounded_side operator()(Point_2 p, Point_2 q, Point_2 r, Point_2 t, int& li) const { Bounded_side operator()(Point_2 p, Point_2 q, Point_2 r, Point_2 t, int& li) const {
// The triangle (p,q,r) cannot be hyperbolic! This case should be handled at triangulation level // The triangle (p,q,r) cannot be hyperbolic! This case should be handled at triangulation level
CGAL_triangulation_precondition(Is_hyperbolic()(p, q, r)); CGAL_triangulation_precondition(Is_Delaunay_hyperbolic()(p, q, r));
// Point p is assumed to be at index 0, q at index 1 and r at index 2 in the face. // Point p is assumed to be at index 0, q at index 1 and r at index 2 in the face.
li = -1; li = -1;