*** empty log message ***

This commit is contained in:
Andreas Fabri 2003-11-16 21:14:03 +00:00
parent eb33c92fca
commit 87b495b3ad
4 changed files with 40 additions and 40 deletions

View File

@ -1,17 +1,17 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Orthogonal_priority_search.tex
% | Reference manual page: Orthogonal_incremental_neighbor_search.tex
% +------------------------------------------------------------------------+
% | 1.07.2001 Johan W.H. Tangelder
% | Package: ASPAS
% |
\RCSdef{\RCSOrthogonalprioritysearchRev}{$Revision$}
\RCSdefDate{\RCSOrthogonalprioritysearchDate}{$Date$}
\RCSdef{\RCSOrthogonalincrementalneighborsearchRev}{$Revision$}
\RCSdefDate{\RCSOrthogonalincrementalneighborsearchDate}{$Date$}
% |
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Orthogonal_priority_search<PointTraits, OrthogonalDistance, Splitter, SpatialTree>}
\begin{ccRefClass}{Orthogonal_incremental_neighbor_search<PointTraits, OrthogonalDistance, Splitter, SpatialTree>}
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
%% \ccHtmlIndexC[class]{} %% add further index entries
@ -19,9 +19,9 @@
\ccDefinition
The class \ccRefName\ implements incremental nearest and furthest neighbor searching
using priority search on a tree.
using incremental_neighbor search on a tree.
\ccInclude{CGAL/Orthogonal_priority_search.h}
\ccInclude{CGAL/Orthogonal_incremental_neighbor_search.h}
\ccParameters
@ -52,7 +52,7 @@ kd tree nodes.
\ccCreationVariable{s} %% choose variable name
\def\ccLongParamLayout{\ccTrue}
\ccConstructor{Orthogonal_priority_search(SpatialTree& tree, Point query, NT eps=NT(0.0),
\ccConstructor{Orthogonal_incremental_neighbor_search(SpatialTree& tree, Point query, NT eps=NT(0.0),
bool search_nearest=true,
OrthogonalDistance d=OrthogonalDistance());}
{Constructor for incremental neighbor searching of the query item \ccc{query}
@ -74,7 +74,7 @@ Inserts statistics of the search process into the output stream \ccc{s}.
\ccSeeAlso
\ccc{CGAL::General_priority_search<PointTraits, GeneralDistance, SpatialTree>}.
\ccc{CGAL::General_incremental_neighbor_search<PointTraits, GeneralDistance, SpatialTree>}.
\end{ccRefClass}

View File

@ -1,28 +1,28 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Orthogonal_standard_search.tex
% | Reference manual page: Orthogonal_k_neighbor_search.tex
% +------------------------------------------------------------------------+
% | 1.07.2001 Johan W.H. Tangelder
% | Package: ASPAS
% |
\RCSdef{\RCSOrthogonalstandardsearchRev}{$Revision$}
\RCSdefDate{\RCSOrthogonalstandardsearchDate}{$Date$}
\RCSdef{\RCSOrthogonalkneighborsearchRev}{$Revision$}
\RCSdefDate{\RCSOrthogonalkneighborsearchDate}{$Date$}
% |
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Orthogonal_standard_search<PointTraits, OrthogonalDistance, Splitter, SpatialTree>}
\begin{ccRefClass}{Orthogonal_k_neighbor_search<PointTraits, OrthogonalDistance, Splitter, SpatialTree>}
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
%% \ccHtmlIndexC[class]{} %% add further index entries
\ccDefinition
The class \ccRefName\ implements approximate $k$-nearest and $k$-furthest neighbor searching
using standard search on a tree using an orthogonal distance
class.
The class \ccRefName\ implements approximate $k$-nearest and
$k$-furthest neighbor searching using k_neighbor search on a tree
using an orthogonal distance class.
\ccInclude{CGAL/Orthogonal_standard_search.h}
\ccInclude{CGAL/Orthogonal_k_neighbor_search.h}
\ccParameters
@ -31,13 +31,13 @@ for example \ccc{CGAL::Kd_tree_traits_2<Kernel>}.
Expects for the second template argument a model of the
concept GeneralDistance. The default type is
\ccc{CGAL::Euclidean_distance<TreeTraits::Point>}.
\ccc{CGAL::Euclidean_distance<PointTraits>}.
Expects for third template argument a model of the concept \ccc{Splitter}.
The default type is \ccc{CGAL::Sliding_midpoint<PointTraits>}.
Expects for fourth template argument an implementation of the concept \ccc{SpatialTree}.
The default type is \ccc{CGAL::Kd_tree<TreeTraits, Splitter, CGAL::Tag_true>}. The
The default type is \ccc{CGAL::Kd_tree<PointTraits, Splitter, CGAL::Tag_true>}. The
template argument must be \ccc{CGAL::Tag_true} because orthogonal search needs extended
kd tree nodes.
@ -54,7 +54,7 @@ kd tree nodes.
\ccOperations
\def\ccLongParamLayout{\ccTrue}
\ccConstructor{Orthogonal_standard_search(SpatialTree tree, Point query, int k=1, NT eps=NT(0.0),
\ccConstructor{Orthogonal_k_neighbor_search(SpatialTree tree, Point query, int k=1, NT eps=NT(0.0),
bool search_nearest=true,
OrthogonalDistance d=OrthogonalDistance());}
{Constructor for searching approximately $k$ neighbors of the query item \ccc{query}
@ -75,7 +75,7 @@ Inserts statistics of the search process into the output stream \ccc{s}.
\ccSeeAlso
\ccc{CGAL::General_standard_search<PointTraits, GeneralDistance, QueryItem, Tree>}.
\ccc{CGAL::General_k_neighbor_search<PointTraits, GeneralDistance, QueryItem, Tree>}.
\end{ccRefClass}

View File

@ -1,17 +1,17 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Orthogonal_priority_search.tex
% | Reference manual page: Orthogonal_incremental_neighbor_search.tex
% +------------------------------------------------------------------------+
% | 1.07.2001 Johan W.H. Tangelder
% | Package: ASPAS
% |
\RCSdef{\RCSOrthogonalprioritysearchRev}{$Revision$}
\RCSdefDate{\RCSOrthogonalprioritysearchDate}{$Date$}
\RCSdef{\RCSOrthogonalincrementalneighborsearchRev}{$Revision$}
\RCSdefDate{\RCSOrthogonalincrementalneighborsearchDate}{$Date$}
% |
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Orthogonal_priority_search<PointTraits, OrthogonalDistance, Splitter, SpatialTree>}
\begin{ccRefClass}{Orthogonal_incremental_neighbor_search<PointTraits, OrthogonalDistance, Splitter, SpatialTree>}
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
%% \ccHtmlIndexC[class]{} %% add further index entries
@ -19,9 +19,9 @@
\ccDefinition
The class \ccRefName\ implements incremental nearest and furthest neighbor searching
using priority search on a tree.
using incremental_neighbor search on a tree.
\ccInclude{CGAL/Orthogonal_priority_search.h}
\ccInclude{CGAL/Orthogonal_incremental_neighbor_search.h}
\ccParameters
@ -52,7 +52,7 @@ kd tree nodes.
\ccCreationVariable{s} %% choose variable name
\def\ccLongParamLayout{\ccTrue}
\ccConstructor{Orthogonal_priority_search(SpatialTree& tree, Point query, NT eps=NT(0.0),
\ccConstructor{Orthogonal_incremental_neighbor_search(SpatialTree& tree, Point query, NT eps=NT(0.0),
bool search_nearest=true,
OrthogonalDistance d=OrthogonalDistance());}
{Constructor for incremental neighbor searching of the query item \ccc{query}
@ -74,7 +74,7 @@ Inserts statistics of the search process into the output stream \ccc{s}.
\ccSeeAlso
\ccc{CGAL::General_priority_search<PointTraits, GeneralDistance, SpatialTree>}.
\ccc{CGAL::General_incremental_neighbor_search<PointTraits, GeneralDistance, SpatialTree>}.
\end{ccRefClass}

View File

@ -1,28 +1,28 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Orthogonal_standard_search.tex
% | Reference manual page: Orthogonal_k_neighbor_search.tex
% +------------------------------------------------------------------------+
% | 1.07.2001 Johan W.H. Tangelder
% | Package: ASPAS
% |
\RCSdef{\RCSOrthogonalstandardsearchRev}{$Revision$}
\RCSdefDate{\RCSOrthogonalstandardsearchDate}{$Date$}
\RCSdef{\RCSOrthogonalkneighborsearchRev}{$Revision$}
\RCSdefDate{\RCSOrthogonalkneighborsearchDate}{$Date$}
% |
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Orthogonal_standard_search<PointTraits, OrthogonalDistance, Splitter, SpatialTree>}
\begin{ccRefClass}{Orthogonal_k_neighbor_search<PointTraits, OrthogonalDistance, Splitter, SpatialTree>}
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
%% \ccHtmlIndexC[class]{} %% add further index entries
\ccDefinition
The class \ccRefName\ implements approximate $k$-nearest and $k$-furthest neighbor searching
using standard search on a tree using an orthogonal distance
class.
The class \ccRefName\ implements approximate $k$-nearest and
$k$-furthest neighbor searching using k_neighbor search on a tree
using an orthogonal distance class.
\ccInclude{CGAL/Orthogonal_standard_search.h}
\ccInclude{CGAL/Orthogonal_k_neighbor_search.h}
\ccParameters
@ -31,13 +31,13 @@ for example \ccc{CGAL::Kd_tree_traits_2<Kernel>}.
Expects for the second template argument a model of the
concept GeneralDistance. The default type is
\ccc{CGAL::Euclidean_distance<TreeTraits::Point>}.
\ccc{CGAL::Euclidean_distance<PointTraits>}.
Expects for third template argument a model of the concept \ccc{Splitter}.
The default type is \ccc{CGAL::Sliding_midpoint<PointTraits>}.
Expects for fourth template argument an implementation of the concept \ccc{SpatialTree}.
The default type is \ccc{CGAL::Kd_tree<TreeTraits, Splitter, CGAL::Tag_true>}. The
The default type is \ccc{CGAL::Kd_tree<PointTraits, Splitter, CGAL::Tag_true>}. The
template argument must be \ccc{CGAL::Tag_true} because orthogonal search needs extended
kd tree nodes.
@ -54,7 +54,7 @@ kd tree nodes.
\ccOperations
\def\ccLongParamLayout{\ccTrue}
\ccConstructor{Orthogonal_standard_search(SpatialTree tree, Point query, int k=1, NT eps=NT(0.0),
\ccConstructor{Orthogonal_k_neighbor_search(SpatialTree tree, Point query, int k=1, NT eps=NT(0.0),
bool search_nearest=true,
OrthogonalDistance d=OrthogonalDistance());}
{Constructor for searching approximately $k$ neighbors of the query item \ccc{query}
@ -75,7 +75,7 @@ Inserts statistics of the search process into the output stream \ccc{s}.
\ccSeeAlso
\ccc{CGAL::General_standard_search<PointTraits, GeneralDistance, QueryItem, Tree>}.
\ccc{CGAL::General_k_neighbor_search<PointTraits, GeneralDistance, QueryItem, Tree>}.
\end{ccRefClass}