This commit is contained in:
Andreas Fabri 2012-11-20 12:30:55 +01:00
parent 151d636fa4
commit bfa239158d
8 changed files with 23 additions and 25 deletions

View File

@ -3,7 +3,7 @@ namespace CGAL {
\ingroup PkgSphericalKernel3GeometricClasses
The enum `Circle_type` is used to classify an object of type `Circle_3`, so as to specify
its type (normal,polar,bipolar or threaded), as defined in section \ref sectionSKobjects.
its type (normal,polar,bipolar or threaded), as defined in Section \ref sectionSKobjects.
\sa `CGAL::classify`
*/

View File

@ -43,7 +43,7 @@ Circular_arc_3(const Circle_3<SphericalKernel> &c, const Circular_arc_point_3& p
///
/// In this
/// definition, we say that a normal vector \f$ (a,b,c)\f$ is <I>positive</I>
/// if \f$ (a,b,c)>(0,0,0)\f$ (i.e. \f$ (a>0) || (a==0) \&\& (b>0) || (a==0)\&\&(b==0)\&\&(c>0)\f$).
/// if \f$ (a,b,c)>(0,0,0)\f$ (i.e.\ \f$ (a>0) || (a==0) \&\& (b>0) || (a==0)\&\&(b==0)\&\&(c>0)\f$).
/// @{
/*!

View File

@ -5,9 +5,7 @@ namespace CGAL {
\ingroup PkgSphericalKernel3GeometricClasses
A typedef to a spherical kernel that provides
both exact geometric predicates and exact geometric constructions.<BR>
<BR>
both exact geometric predicates and exact geometric constructions.
It defines the same types as `CGAL::Spherical_kernel_3`.

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*!
\ingroup PkgSphericalKernel3GeometricFunctions
Classify a circle according to `sphere`, as defined in section \ref sectionSKobjects.
Classify a circle according to `sphere`, as defined in Section \ref sectionSKobjects.
\pre `c` lies on `sphere`.
\sa `CGAL::Circle_type`
@ -42,7 +42,7 @@ const CGAL::Circular_arc_point_3<SphericalKernel> & q,const CGAL::Sphere_3<Spher
\ingroup PkgSphericalKernel3GeometricFunctions
Compares the \f$ \theta\f$-coordinates of `p` and of the meridian defined by `m` (see section \ref sectionSKobjects)
Compares the \f$ \theta\f$-coordinates of `p` and of the meridian defined by `m` (see Section \ref sectionSKobjects)
in the cylindrical coordinate system relative to `sphere`.
\pre `p` lies on `sphere`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$.
@ -63,7 +63,7 @@ compare_theta(const CGAL::Circular_arc_point_3<SphericalKernel> &p, const CGAL::
/*!
\ingroup PkgSphericalKernel3GeometricFunctions
Compares the \f$ \theta\f$-coordinates of the meridian defined by `m` and of `p` (see section \ref sectionSKobjects)
Compares the \f$ \theta\f$-coordinates of the meridian defined by `m` and of `p` (see Section \ref sectionSKobjects)
in the cylindrical coordinate system relative to `sphere`.
\pre `p` lies on `sphere`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$.
@ -135,7 +135,7 @@ namespace CGAL {
Returns the point on the circle that is extremal in \f$ \theta\f$ using the cylindrical coordinate system
relative to `sphere`, and that has the smallest (resp.\ largest)
\f$ \theta\f$-coordinate of the two points if `b` is `true` (resp.\ `false`).
See section \ref sectionSKobjects for definitions.
See Section \ref sectionSKobjects for definitions.
\pre `c` lies on `sphere` and is a normal circle.
*/
@ -154,7 +154,7 @@ Copies in the output iterator the \f$ \theta\f$-extremal points of the
circle relatively to `sphere`. `res` iterates on elements of type
`Circular_arc_point_3<SphericalKernel>`, lexicographically
sorted in the cylindrical coordinate system relative to `sphere`.
See section \ref sectionSKobjects for definitions.
See Section \ref sectionSKobjects for definitions.
\pre `c` lies on `sphere` and is a normal circle.
*/

View File

@ -19,8 +19,7 @@ and functionality in a `FieldNumberType`.
All the choices (interface, robustness, representation, and so on)
made here are consistent with the choices made in the \cgal kernel,
for which we refer the user to the kernel manual
(Chapter \ref chapterkernel23).
for which we refer the user to the \ref chapterkernel23 "2D and 3D Linear Kernel").
\section sectionSKobjects Spherical Kernel Objects
@ -60,7 +59,7 @@ of these operations requires the following definitions:
<I>Coordinate system.</I>
Let consider a sphere with center `c` and radius `r`. Using
the Cartesian frame centered at `c`, we define a cylindrical
the %Cartesian frame centered at `c`, we define a cylindrical
coordinate system \f$ (\theta,z)\f$ on that sphere, with \f$ \theta \in \left[
0,2\pi \right)\f$ and \f$ z \in \left[ -r,r \right]\f$. \f$ \theta\f$ is given
in radian and measured in the \f$ xy\f$-plane around the \f$ z\f$-axis, starting
@ -134,7 +133,9 @@ arc is defined on a bipolar circle.
\section Circular_kernel_3Software Software Design
The design of `Spherical_kernel_3` is similar to the design of
`Circular_kernel_2` (see Chapter \ref Chapter_2D_Circular_Geometry_Kernel).
`Circular_kernel_2` (see Chapter \ref Chapter_2D_Circular_Geometry_Kernel
"2D Circular Geometry Kernel").
It has two template parameters:
<UL>
<LI> the first parameter must model the \cgal
@ -149,8 +150,8 @@ provides exact computations on algebraic objects.
</UL>
The 3D spherical kernel uses the extensibility scheme presented in the
kernel manual (see Section \ref sectionextensiblekernel). The types
of `Kernel` are inherited by the 3D spherical kernel and some
kernel manual (see Section \ref sectionextensiblekernel "Extensible Kernel").
The types of `Kernel` are inherited by the 3D spherical kernel and some
types are taken from the `AlgebraicKernelForSpheres`
parameter. `Spherical_kernel_3` introduces new geometric objects
as mentioned in Section \ref sectionSKobjects.
@ -182,9 +183,8 @@ then compared.
\section Circular_kernel_3Design Design and Implementation History
This package follows the 2D circular kernel package (see
Chapter \ref Chapter_2D_Circular_Geometry_Kernel), which induced the basic
choices of design.
This package follows the design of the package
\ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel").
Julien Hazebrouck and Damien Leroy participated in a first
prototype.

View File

@ -31,7 +31,7 @@ Comparison_result operator()
const SphericalKernel::Circular_arc_point_3 &q );
/*!
Compares the \f$ \theta\f$-coordinates of `p` and of the meridian defined by `m` (see section \ref sectionSKobjects) in the cylindrical coordinate system relative to the context sphere used by the function `SphericalKernel::compare_theta_3_object`.
Compares the \f$ \theta\f$-coordinates of `p` and of the meridian defined by `m` (see Section \ref sectionSKobjects) in the cylindrical coordinate system relative to the context sphere used by the function `SphericalKernel::compare_theta_3_object`.
\pre `p` lies on the context sphere used by the function `SphericalKernel::compare_theta_3_object`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$.
*/
@ -46,7 +46,7 @@ Comparison_result operator()
(const SphericalKernel::Vector_3 &m,const SphericalKernel::Circular_arc_point_3 &p);
/*!
Compares the \f$ \theta\f$-coordinates of the meridians defined by `m1` and by `m2` (see section \ref sectionSKobjects)
Compares the \f$ \theta\f$-coordinates of the meridians defined by `m1` and by `m2` (see Section \ref sectionSKobjects)
in the cylindrical coordinate system relative to the context sphere used by the function `SphericalKernel::compare_theta_3_object`.
`m1` \f$ \neq(0,0,0)\f$, `m2` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m1` and `m2` is \f$ 0\f$.
*/

View File

@ -15,8 +15,8 @@ public:
/*!
compares the \f$ z\f$-coordinates of the two intersections points of `a0` and `a1` with the meridian defined by `m` (see section \ref sectionSKobjects).
\pre `a0` and `a1` lie on the context sphere used by the function `SphericalKernel::compare_z_at_theta_3_object`. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$. Arcs `a0` and `a1` are \f$ \theta\f$-monotone and both intersected by the meridian defined by `m`(see section \ref sectionSKobjects).
compares the \f$ z\f$-coordinates of the two intersections points of `a0` and `a1` with the meridian defined by `m` (see Section \ref sectionSKobjects).
\pre `a0` and `a1` lie on the context sphere used by the function `SphericalKernel::compare_z_at_theta_3_object`. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$. Arcs `a0` and `a1` are \f$ \theta\f$-monotone and both intersected by the meridian defined by `m`(see Section \ref sectionSKobjects).
*/
Comparison_result operator()
( const SphericalKernel::Circular_arc_3& a0,

View File

@ -19,7 +19,7 @@ public:
Copies in the output iterator the results of the split of arc `a` at the \f$ \theta\f$-extremal
point(s) of its supporting circle relatively to the context sphere used by the function `SphericalKernel::make_theta_monotone_3_object`
(Refer to section \ref sectionSKobjects for the definition of these points.)
(Refer to Section \ref sectionSKobjects for the definition of these points.)
The output iterator may contain no arc (if the supporting circle is a bipolar circle),
one arc (if `a` is already \f$ \theta\f$-monotone), two arcs (if only one \f$ \theta\f$-extremal point is on `a`), or
three arcs (if two \f$ \theta\f$-extremal points are on `a`).
@ -33,7 +33,7 @@ OutputIterator operator()
/*!
Copies in the output iterator the results of the split of circle `c` at its \f$ \theta\f$-extremal
point(s) relatively to the context sphere used by the function `SphericalKernel::make_theta_monotone_3_object`.
(Refer to section \ref sectionSKobjects for the definition of these points.)
(Refer to Section \ref sectionSKobjects for the definition of these points.)
The output iterator may contain no arc (if the circle is bipolar),
one arc (if the circle is polar or threaded), or two arcs (if the circle is normal).