mirror of https://github.com/CGAL/cgal
polish
This commit is contained in:
parent
151d636fa4
commit
bfa239158d
|
|
@ -3,7 +3,7 @@ namespace CGAL {
|
|||
\ingroup PkgSphericalKernel3GeometricClasses
|
||||
|
||||
The enum `Circle_type` is used to classify an object of type `Circle_3`, so as to specify
|
||||
its type (normal,polar,bipolar or threaded), as defined in section \ref sectionSKobjects.
|
||||
its type (normal,polar,bipolar or threaded), as defined in Section \ref sectionSKobjects.
|
||||
|
||||
\sa `CGAL::classify`
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -43,7 +43,7 @@ Circular_arc_3(const Circle_3<SphericalKernel> &c, const Circular_arc_point_3& p
|
|||
///
|
||||
/// In this
|
||||
/// definition, we say that a normal vector \f$ (a,b,c)\f$ is <I>positive</I>
|
||||
/// if \f$ (a,b,c)>(0,0,0)\f$ (i.e. \f$ (a>0) || (a==0) \&\& (b>0) || (a==0)\&\&(b==0)\&\&(c>0)\f$).
|
||||
/// if \f$ (a,b,c)>(0,0,0)\f$ (i.e.\ \f$ (a>0) || (a==0) \&\& (b>0) || (a==0)\&\&(b==0)\&\&(c>0)\f$).
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
|
|
|
|||
|
|
@ -5,9 +5,7 @@ namespace CGAL {
|
|||
\ingroup PkgSphericalKernel3GeometricClasses
|
||||
|
||||
A typedef to a spherical kernel that provides
|
||||
both exact geometric predicates and exact geometric constructions.<BR>
|
||||
|
||||
<BR>
|
||||
both exact geometric predicates and exact geometric constructions.
|
||||
|
||||
It defines the same types as `CGAL::Spherical_kernel_3`.
|
||||
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgSphericalKernel3GeometricFunctions
|
||||
|
||||
Classify a circle according to `sphere`, as defined in section \ref sectionSKobjects.
|
||||
Classify a circle according to `sphere`, as defined in Section \ref sectionSKobjects.
|
||||
\pre `c` lies on `sphere`.
|
||||
|
||||
\sa `CGAL::Circle_type`
|
||||
|
|
@ -42,7 +42,7 @@ const CGAL::Circular_arc_point_3<SphericalKernel> & q,const CGAL::Sphere_3<Spher
|
|||
\ingroup PkgSphericalKernel3GeometricFunctions
|
||||
|
||||
|
||||
Compares the \f$ \theta\f$-coordinates of `p` and of the meridian defined by `m` (see section \ref sectionSKobjects)
|
||||
Compares the \f$ \theta\f$-coordinates of `p` and of the meridian defined by `m` (see Section \ref sectionSKobjects)
|
||||
in the cylindrical coordinate system relative to `sphere`.
|
||||
\pre `p` lies on `sphere`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$.
|
||||
|
||||
|
|
@ -63,7 +63,7 @@ compare_theta(const CGAL::Circular_arc_point_3<SphericalKernel> &p, const CGAL::
|
|||
/*!
|
||||
\ingroup PkgSphericalKernel3GeometricFunctions
|
||||
|
||||
Compares the \f$ \theta\f$-coordinates of the meridian defined by `m` and of `p` (see section \ref sectionSKobjects)
|
||||
Compares the \f$ \theta\f$-coordinates of the meridian defined by `m` and of `p` (see Section \ref sectionSKobjects)
|
||||
in the cylindrical coordinate system relative to `sphere`.
|
||||
\pre `p` lies on `sphere`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$.
|
||||
|
||||
|
|
@ -135,7 +135,7 @@ namespace CGAL {
|
|||
Returns the point on the circle that is extremal in \f$ \theta\f$ using the cylindrical coordinate system
|
||||
relative to `sphere`, and that has the smallest (resp.\ largest)
|
||||
\f$ \theta\f$-coordinate of the two points if `b` is `true` (resp.\ `false`).
|
||||
See section \ref sectionSKobjects for definitions.
|
||||
See Section \ref sectionSKobjects for definitions.
|
||||
\pre `c` lies on `sphere` and is a normal circle.
|
||||
|
||||
*/
|
||||
|
|
@ -154,7 +154,7 @@ Copies in the output iterator the \f$ \theta\f$-extremal points of the
|
|||
circle relatively to `sphere`. `res` iterates on elements of type
|
||||
`Circular_arc_point_3<SphericalKernel>`, lexicographically
|
||||
sorted in the cylindrical coordinate system relative to `sphere`.
|
||||
See section \ref sectionSKobjects for definitions.
|
||||
See Section \ref sectionSKobjects for definitions.
|
||||
\pre `c` lies on `sphere` and is a normal circle.
|
||||
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -19,8 +19,7 @@ and functionality in a `FieldNumberType`.
|
|||
|
||||
All the choices (interface, robustness, representation, and so on)
|
||||
made here are consistent with the choices made in the \cgal kernel,
|
||||
for which we refer the user to the kernel manual
|
||||
(Chapter \ref chapterkernel23).
|
||||
for which we refer the user to the \ref chapterkernel23 "2D and 3D Linear Kernel").
|
||||
|
||||
\section sectionSKobjects Spherical Kernel Objects
|
||||
|
||||
|
|
@ -60,7 +59,7 @@ of these operations requires the following definitions:
|
|||
|
||||
<I>Coordinate system.</I>
|
||||
Let consider a sphere with center `c` and radius `r`. Using
|
||||
the Cartesian frame centered at `c`, we define a cylindrical
|
||||
the %Cartesian frame centered at `c`, we define a cylindrical
|
||||
coordinate system \f$ (\theta,z)\f$ on that sphere, with \f$ \theta \in \left[
|
||||
0,2\pi \right)\f$ and \f$ z \in \left[ -r,r \right]\f$. \f$ \theta\f$ is given
|
||||
in radian and measured in the \f$ xy\f$-plane around the \f$ z\f$-axis, starting
|
||||
|
|
@ -134,7 +133,9 @@ arc is defined on a bipolar circle.
|
|||
\section Circular_kernel_3Software Software Design
|
||||
|
||||
The design of `Spherical_kernel_3` is similar to the design of
|
||||
`Circular_kernel_2` (see Chapter \ref Chapter_2D_Circular_Geometry_Kernel).
|
||||
`Circular_kernel_2` (see Chapter \ref Chapter_2D_Circular_Geometry_Kernel
|
||||
"2D Circular Geometry Kernel").
|
||||
|
||||
It has two template parameters:
|
||||
<UL>
|
||||
<LI> the first parameter must model the \cgal
|
||||
|
|
@ -149,8 +150,8 @@ provides exact computations on algebraic objects.
|
|||
</UL>
|
||||
|
||||
The 3D spherical kernel uses the extensibility scheme presented in the
|
||||
kernel manual (see Section \ref sectionextensiblekernel). The types
|
||||
of `Kernel` are inherited by the 3D spherical kernel and some
|
||||
kernel manual (see Section \ref sectionextensiblekernel "Extensible Kernel").
|
||||
The types of `Kernel` are inherited by the 3D spherical kernel and some
|
||||
types are taken from the `AlgebraicKernelForSpheres`
|
||||
parameter. `Spherical_kernel_3` introduces new geometric objects
|
||||
as mentioned in Section \ref sectionSKobjects.
|
||||
|
|
@ -182,9 +183,8 @@ then compared.
|
|||
|
||||
\section Circular_kernel_3Design Design and Implementation History
|
||||
|
||||
This package follows the 2D circular kernel package (see
|
||||
Chapter \ref Chapter_2D_Circular_Geometry_Kernel), which induced the basic
|
||||
choices of design.
|
||||
This package follows the design of the package
|
||||
\ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel").
|
||||
|
||||
Julien Hazebrouck and Damien Leroy participated in a first
|
||||
prototype.
|
||||
|
|
|
|||
|
|
@ -31,7 +31,7 @@ Comparison_result operator()
|
|||
const SphericalKernel::Circular_arc_point_3 &q );
|
||||
|
||||
/*!
|
||||
Compares the \f$ \theta\f$-coordinates of `p` and of the meridian defined by `m` (see section \ref sectionSKobjects) in the cylindrical coordinate system relative to the context sphere used by the function `SphericalKernel::compare_theta_3_object`.
|
||||
Compares the \f$ \theta\f$-coordinates of `p` and of the meridian defined by `m` (see Section \ref sectionSKobjects) in the cylindrical coordinate system relative to the context sphere used by the function `SphericalKernel::compare_theta_3_object`.
|
||||
\pre `p` lies on the context sphere used by the function `SphericalKernel::compare_theta_3_object`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$.
|
||||
|
||||
*/
|
||||
|
|
@ -46,7 +46,7 @@ Comparison_result operator()
|
|||
(const SphericalKernel::Vector_3 &m,const SphericalKernel::Circular_arc_point_3 &p);
|
||||
|
||||
/*!
|
||||
Compares the \f$ \theta\f$-coordinates of the meridians defined by `m1` and by `m2` (see section \ref sectionSKobjects)
|
||||
Compares the \f$ \theta\f$-coordinates of the meridians defined by `m1` and by `m2` (see Section \ref sectionSKobjects)
|
||||
in the cylindrical coordinate system relative to the context sphere used by the function `SphericalKernel::compare_theta_3_object`.
|
||||
`m1` \f$ \neq(0,0,0)\f$, `m2` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m1` and `m2` is \f$ 0\f$.
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -15,8 +15,8 @@ public:
|
|||
|
||||
/*!
|
||||
|
||||
compares the \f$ z\f$-coordinates of the two intersections points of `a0` and `a1` with the meridian defined by `m` (see section \ref sectionSKobjects).
|
||||
\pre `a0` and `a1` lie on the context sphere used by the function `SphericalKernel::compare_z_at_theta_3_object`. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$. Arcs `a0` and `a1` are \f$ \theta\f$-monotone and both intersected by the meridian defined by `m`(see section \ref sectionSKobjects).
|
||||
compares the \f$ z\f$-coordinates of the two intersections points of `a0` and `a1` with the meridian defined by `m` (see Section \ref sectionSKobjects).
|
||||
\pre `a0` and `a1` lie on the context sphere used by the function `SphericalKernel::compare_z_at_theta_3_object`. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$. Arcs `a0` and `a1` are \f$ \theta\f$-monotone and both intersected by the meridian defined by `m`(see Section \ref sectionSKobjects).
|
||||
*/
|
||||
Comparison_result operator()
|
||||
( const SphericalKernel::Circular_arc_3& a0,
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ public:
|
|||
|
||||
Copies in the output iterator the results of the split of arc `a` at the \f$ \theta\f$-extremal
|
||||
point(s) of its supporting circle relatively to the context sphere used by the function `SphericalKernel::make_theta_monotone_3_object`
|
||||
(Refer to section \ref sectionSKobjects for the definition of these points.)
|
||||
(Refer to Section \ref sectionSKobjects for the definition of these points.)
|
||||
The output iterator may contain no arc (if the supporting circle is a bipolar circle),
|
||||
one arc (if `a` is already \f$ \theta\f$-monotone), two arcs (if only one \f$ \theta\f$-extremal point is on `a`), or
|
||||
three arcs (if two \f$ \theta\f$-extremal points are on `a`).
|
||||
|
|
@ -33,7 +33,7 @@ OutputIterator operator()
|
|||
/*!
|
||||
Copies in the output iterator the results of the split of circle `c` at its \f$ \theta\f$-extremal
|
||||
point(s) relatively to the context sphere used by the function `SphericalKernel::make_theta_monotone_3_object`.
|
||||
(Refer to section \ref sectionSKobjects for the definition of these points.)
|
||||
(Refer to Section \ref sectionSKobjects for the definition of these points.)
|
||||
The output iterator may contain no arc (if the circle is bipolar),
|
||||
one arc (if the circle is polar or threaded), or two arcs (if the circle is normal).
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue