Use conventional method for calling base members

This commit is contained in:
Giles Bathgate 2022-03-03 19:45:06 +00:00
parent a0d5fae2bd
commit c6ae1fb238
1 changed files with 3 additions and 3 deletions

View File

@ -63,7 +63,7 @@ $q$ are not antipodal on $S_2$, then this circle is unique and oriented
such that a walk along |\Mvar| meets $p$ just before the shorter segment
between $p$ and $q$. If $p$ and $q$ are antipodal of each other then we
create any great circle that contains $p$ and $q$.}*/
{ Point_3 p1(0,0,0), p4 = CGAL::ORIGIN + ((Base*) this)->orthogonal_vector();
{ Point_3 p1(0,0,0), p4 = CGAL::ORIGIN + Base::orthogonal_vector();
if ( p != q.antipode() ) {
if (R_().orientation_3_object()(p1,Point_3(p),
Point_3(q), p4) != CGAL::POSITIVE )
@ -123,12 +123,12 @@ Plane_3 plane() const { return Base(*this); }
Plane_3 plane_through(const Point_3& p) const
/*{\Mop returns the plane parallel to |\Mvar| that
contains point |p|.}*/
{ return Plane_3(p,((Base*) this)->orthogonal_vector()); }
{ return Plane_3(p,Base::orthogonal_vector()); }
Sphere_point<R> orthogonal_pole() const
/*{\Mop returns the point that is the pole of the
hemisphere left of |\Mvar|.}*/
{ return CGAL::ORIGIN+((Base*) this)->orthogonal_vector(); }
{ return CGAL::ORIGIN+Base::orthogonal_vector(); }
Sphere_segment_pair split_at(const Sphere_point<R>& p) const;
/*{\Mop returns the pair of circle segments that is the result