mirror of https://github.com/CGAL/cgal
Use conventional method for calling base members
This commit is contained in:
parent
a0d5fae2bd
commit
c6ae1fb238
|
|
@ -63,7 +63,7 @@ $q$ are not antipodal on $S_2$, then this circle is unique and oriented
|
|||
such that a walk along |\Mvar| meets $p$ just before the shorter segment
|
||||
between $p$ and $q$. If $p$ and $q$ are antipodal of each other then we
|
||||
create any great circle that contains $p$ and $q$.}*/
|
||||
{ Point_3 p1(0,0,0), p4 = CGAL::ORIGIN + ((Base*) this)->orthogonal_vector();
|
||||
{ Point_3 p1(0,0,0), p4 = CGAL::ORIGIN + Base::orthogonal_vector();
|
||||
if ( p != q.antipode() ) {
|
||||
if (R_().orientation_3_object()(p1,Point_3(p),
|
||||
Point_3(q), p4) != CGAL::POSITIVE )
|
||||
|
|
@ -123,12 +123,12 @@ Plane_3 plane() const { return Base(*this); }
|
|||
Plane_3 plane_through(const Point_3& p) const
|
||||
/*{\Mop returns the plane parallel to |\Mvar| that
|
||||
contains point |p|.}*/
|
||||
{ return Plane_3(p,((Base*) this)->orthogonal_vector()); }
|
||||
{ return Plane_3(p,Base::orthogonal_vector()); }
|
||||
|
||||
Sphere_point<R> orthogonal_pole() const
|
||||
/*{\Mop returns the point that is the pole of the
|
||||
hemisphere left of |\Mvar|.}*/
|
||||
{ return CGAL::ORIGIN+((Base*) this)->orthogonal_vector(); }
|
||||
{ return CGAL::ORIGIN+Base::orthogonal_vector(); }
|
||||
|
||||
Sphere_segment_pair split_at(const Sphere_point<R>& p) const;
|
||||
/*{\Mop returns the pair of circle segments that is the result
|
||||
|
|
|
|||
Loading…
Reference in New Issue