mirror of https://github.com/CGAL/cgal
ispelled version
This commit is contained in:
parent
6202dd45a6
commit
c8c4328f9c
|
|
@ -36,10 +36,10 @@ of degree up to~2.}
|
|||
|
||||
\ccNestedType{Root_of_8_1}{A model of
|
||||
\ccc{RootOf_8_1}, for algebraic numbers
|
||||
of degreee at most 8}
|
||||
of degree at most 8}
|
||||
\ccGlue
|
||||
\ccNestedType{Root_of_8_3}{A model of
|
||||
\ccc{AlgebraicKernelForQuadric::Root_of_8_3}, for
|
||||
\ccc{AlgebraicKernelForQuadrics::Root_of_8_3}, for
|
||||
solutions of systems of three models of
|
||||
\ccc{AlgebraicKernelForQuadrics::Polynomial_2_3}.}
|
||||
|
||||
|
|
|
|||
|
|
@ -21,9 +21,6 @@
|
|||
|
||||
\ccMethod{QuadricalKernel_3::Curve_3 supporting_curve();}{}
|
||||
|
||||
%A circular arc is supposed to be oriented counterclockwise, from
|
||||
%\ccc{source} to \ccc{target}.
|
||||
|
||||
\ccMethod{QuadricalKernel_3::Curve_point_3 source();}{Only valid if source
|
||||
is finite.}
|
||||
\ccGlue
|
||||
|
|
@ -34,7 +31,7 @@ is finite.}
|
|||
|
||||
\ccFunction{istream& operator>> (std::istream& is, Curve_arc_3 & ca);}{}
|
||||
\ccGlue
|
||||
\ccFunction{ostream& operator<< (std::ostream& os, const Circular_arc_3 & ca);}{}
|
||||
\ccFunction{ostream& operator<< (std::ostream& os, const Curve_arc_3 & ca);}{}
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
\ccIsModel
|
||||
|
||||
\ccc{QuadricalKernal_3::CurvePoint_3}
|
||||
\ccc{QuadricalKernel_3::CurvePoint_3}
|
||||
|
||||
\ccCreation
|
||||
\ccCreationVariable{p}
|
||||
|
|
@ -12,48 +12,48 @@
|
|||
\ccThree{Curve_point_3}{spc.is_x_monotone()}{}
|
||||
\ccThreeToTwo
|
||||
|
||||
\ccConstructor{Curve_point_3(const QuadricalKernal_3::Point_3 &p)}{}
|
||||
\ccConstructor{Curve_point_3(const QuadricalKernel_3::Point_3 &p)}{}
|
||||
|
||||
\ccConstructor{Curve_point_3(const QuadricalKernal_3::Root_of_3 &r)}{}
|
||||
\ccConstructor{Curve_point_3(const QuadricalKernel_3::Root_of_3 &r)}{}
|
||||
|
||||
\ccAccessFunctions
|
||||
|
||||
\ccThree{CurvedKernel::Root_of_3}{ca.is_x_monotone()}{}
|
||||
\ccThreeToTwo
|
||||
|
||||
%\ccMethod{const QuadricalKernal_3::Root_of_1 & x();}{$x$-coordinate of the point.}
|
||||
%\ccMethod{const QuadricalKernel_3::Root_of_1 & x();}{$x$-coordinate of the point.}
|
||||
%\ccGlue
|
||||
%\ccMethod{const QuadricalKernal_3::Root_of_1 & y();}{$y$-coordinate of the point.}
|
||||
%\ccMethod{const QuadricalKernel_3::Root_of_1 & y();}{$y$-coordinate of the point.}
|
||||
%\ccGlue
|
||||
%\ccMethod{const QuadricalKernal_3::Root_of_1 & z();}{$z$-coordinate of the point.}
|
||||
%\ccMethod{const QuadricalKernel_3::Root_of_1 & z();}{$z$-coordinate of the point.}
|
||||
|
||||
\ccMethod{Bbox_3 bbox() const;}
|
||||
{Returns a bounding box around the point.}
|
||||
|
||||
\ccOperations
|
||||
|
||||
\ccFunction{bool operator==(const Curve_point_3<QuadricalKernal_3> &p,
|
||||
const Curve_point_3<QuadricalKernal_3> &q);}
|
||||
\ccFunction{bool operator==(const Curve_point_3<QuadricalKernel_3> &p,
|
||||
const Curve_point_3<QuadricalKernel_3> &q);}
|
||||
{Test for equality. Two points are equal, iff their coordinates are equal.}
|
||||
|
||||
\ccFunction{bool operator!=(const Curve_point_3<QuadricalKernal_3> &p,
|
||||
const Curve_point_3<QuadricalKernal_3> &q);}
|
||||
{Test for nonequality.}
|
||||
\ccFunction{bool operator!=(const Curve_point_3<QuadricalKernel_3> &p,
|
||||
const Curve_point_3<QuadricalKernel_3> &q);}
|
||||
{Test for non-equality.}
|
||||
|
||||
\ccFunction{bool operator<(const Curve_point_3<QuadricalKernal_3> &p,
|
||||
const Curve_point_3<QuadricalKernal_3> &q);}
|
||||
\ccFunction{bool operator<(const Curve_point_3<QuadricalKernel_3> &p,
|
||||
const Curve_point_3<QuadricalKernel_3> &q);}
|
||||
{Returns true iff $p$ is lexicographically smaller than $q$. First compare $x$-coordinates, if equal compare $y$-coordinates, if equal compare $z$-coordinates.}
|
||||
|
||||
\ccFunction{bool operator>(const Curve_point_3<QuadricalKernal_3> &p,
|
||||
const Curve_point_3<QuadricalKernal_3> &q);}
|
||||
\ccFunction{bool operator>(const Curve_point_3<QuadricalKernel_3> &p,
|
||||
const Curve_point_3<QuadricalKernel_3> &q);}
|
||||
{Returns true iff $p$ is lexicographically greater than $q$.}
|
||||
|
||||
\ccFunction{bool operator<=(const Curve_point_3<QuadricalKernal_3> &p,
|
||||
const Curve_point_3<QuadricalKernal_3> &q);}
|
||||
\ccFunction{bool operator<=(const Curve_point_3<QuadricalKernel_3> &p,
|
||||
const Curve_point_3<QuadricalKernel_3> &q);}
|
||||
{Returns true iff $p$ is lexicographically smaller than or equal to $q$.}
|
||||
|
||||
\ccFunction{bool operator>=(const Curve_point_3<QuadricalKernal_3> &p,
|
||||
const Curve_point_3<QuadricalKernal_3> &q);}
|
||||
\ccFunction{bool operator>=(const Curve_point_3<QuadricalKernel_3> &p,
|
||||
const Curve_point_3<QuadricalKernel_3> &q);}
|
||||
{Returns true iff $p$ is lexicographically greater than or equal to $q$.}
|
||||
|
||||
\ccHeading{I/O}
|
||||
|
|
|
|||
|
|
@ -43,7 +43,7 @@ and depending on the types \ccc{Type_1} and \ccc{Type_2}, the computed
|
|||
where the unsigned integer is the multiplicity of the corresponding
|
||||
intersection point between \ccc{obj_1} and \ccc{obj_2},
|
||||
\item {} \ccc{Type_1}, when \ccc{Type_1} and \ccc{Type_2} are equal, and
|
||||
if the two objets \ccc{obj1} and \ccc{obj2} are equal,
|
||||
if the two objects \ccc{obj1} and \ccc{obj2} are equal,
|
||||
\item {} \ccc{QuadricalKernel_3::Curve_arc_3} in case of an overlap of
|
||||
two arcs
|
||||
\end{itemize}
|
||||
|
|
@ -57,7 +57,7 @@ where the unsigned integer is the multiplicity of the corresponding
|
|||
intersection point,
|
||||
\item {} \ccc{QuadricalKernel_3::Curve_3} or
|
||||
\item {} \ccc{Type_1}, when \ccc{Type_1}, \ccc{Type_2} and \ccc{Type_3}
|
||||
are equal, and if the three objets \ccc{obj1} and \ccc{obj2} and \ccc{obj3}
|
||||
are equal, and if the three objects \ccc{obj1} and \ccc{obj2} and \ccc{obj3}
|
||||
are equal.
|
||||
\end{itemize}
|
||||
|
||||
|
|
|
|||
|
|
@ -25,6 +25,6 @@
|
|||
\ccMethod{QuadricalKernel_3Kernel::Bbox_3 bbox();}{}
|
||||
|
||||
\ccFunction{bool operator==(const Quadric_3<QuadricalKernel_3> &p,
|
||||
const Qaudric_3<QuadricalKernel_3> &q);}{}
|
||||
const Quadric_3<QuadricalKernel_3> &q);}{}
|
||||
|
||||
\end{ccRefClass}
|
||||
|
|
|
|||
|
|
@ -39,8 +39,8 @@ It seems that a triangular patch consisting of three instances of
|
|||
But it is not possible to define an instance of \ccc{Quadric_3} that
|
||||
passes through two given instances of \ccc{Curve_point_3}. This implies
|
||||
that there is no way to find a third arc that can form together with two
|
||||
given arcs a triangular patch. In other words, onbe could say, that
|
||||
it is not possible to do iteratative constructions.
|
||||
given arcs a triangular patch. In other words, one could say, that
|
||||
it is not possible to do iterative constructions.
|
||||
|
||||
A model of \ccc{QuadricalKernel_3} must also provide predicates,
|
||||
constructions and other functionalities.
|
||||
|
|
|
|||
Loading…
Reference in New Issue