mirror of https://github.com/CGAL/cgal
Remove some spurious "const".
This commit is contained in:
parent
7a1276a751
commit
cace705a55
|
|
@ -255,11 +255,11 @@ an edge (resp. facet) \ccc{infinite} if it is incident to the infinite vertex.
|
|||
\ccHeading{Geometric access functions}
|
||||
\ccThree{Tetrahedron}{t.tetrahedron()}{}
|
||||
|
||||
\ccMethod{Tetrahedron tetrahedron(const Cell_handle c) const;}
|
||||
\ccMethod{Tetrahedron tetrahedron(Cell_handle c) const;}
|
||||
{Returns the tetrahedron formed by the four vertices of \ccc{c}.
|
||||
\ccPrecond{\ccVar.\ccc{dimension()} $=3$ and the cell is finite.}}
|
||||
\ccGlue
|
||||
\ccMethod{Triangle triangle(const Cell_handle c, int i) const;}
|
||||
\ccMethod{Triangle triangle(Cell_handle c, int i) const;}
|
||||
{Returns the triangle formed by the three vertices of facet
|
||||
\ccc{(c,i)}. The triangle is oriented so that its normal points to the
|
||||
inside of cell \ccc{c}.
|
||||
|
|
@ -274,7 +274,7 @@ in dimension~3, $i = 3$ in dimension~2, and the facet is finite.}}
|
|||
{Returns the line segment formed by the vertices of \ccc{e}.
|
||||
\ccPrecond{\ccVar.\ccc{dimension()} $\geq 1$ and \ccc{e} is finite.}}
|
||||
\ccGlue
|
||||
\ccMethod{Segment segment(const Cell_handle c, int i, int j) const;}
|
||||
\ccMethod{Segment segment(Cell_handle c, int i, int j) const;}
|
||||
{Same as the previous method for edge \ccc{(c,i,j)}.
|
||||
\ccPrecond{As above and $i\neq j$. Moreover $i,j \in \{0,1,2,3\}$ in
|
||||
dimension~3, $i,j \in \{0,1,2\}$ in dimension~2, $i,j \in \{0,1\}$ in
|
||||
|
|
@ -282,14 +282,14 @@ dimension~1.}}
|
|||
|
||||
\ccHeading{Tests for Finite and Infinite Vertices and Faces}
|
||||
|
||||
\ccMethod{bool is_infinite(const Vertex_handle v) const;}
|
||||
\ccMethod{bool is_infinite(Vertex_handle v) const;}
|
||||
{\ccc{true}, iff vertex \ccc{v} is the infinite vertex.}
|
||||
\ccGlue
|
||||
\ccMethod{bool is_infinite(const Cell_handle c) const;}
|
||||
\ccMethod{bool is_infinite(Cell_handle c) const;}
|
||||
{\ccc{true}, iff \ccc{c} is incident to the infinite vertex.
|
||||
\ccPrecond{\ccVar.\ccc{dimension()} $=3$.}}
|
||||
\ccGlue
|
||||
\ccMethod{bool is_infinite(const Cell_handle c, int i) const;}
|
||||
\ccMethod{bool is_infinite(Cell_handle c, int i) const;}
|
||||
{\ccc{true}, iff the facet \ccc{i} of cell \ccc{c} is incident to the
|
||||
infinite vertex.
|
||||
\ccPrecond{\ccVar.\ccc{dimension()} $\geq 2$ and $i\in\{0,1,2,3\}$ in
|
||||
|
|
@ -299,7 +299,7 @@ dimension~3, $i=3$ in dimension~2.}}
|
|||
{\ccc{true} iff facet \ccc{f} is incident to the infinite vertex.
|
||||
\ccPrecond{\ccVar.\ccc{dimension()} $\geq 2$.}}
|
||||
\ccGlue
|
||||
\ccMethod{bool is_infinite(const Cell_handle c, int i, int j) const;}
|
||||
\ccMethod{bool is_infinite(Cell_handle c, int i, int j) const;}
|
||||
{\ccc{true}, iff the edge \ccc{(i,j)} of cell \ccc{c} is incident to
|
||||
the infinite vertex.
|
||||
\ccPrecond{\ccVar.\ccc{dimension()} $\geq 1$ and $i\neq j$. Moreover
|
||||
|
|
|
|||
Loading…
Reference in New Issue