mirror of https://github.com/CGAL/cgal
*** empty log message ***
This commit is contained in:
parent
1a1950514c
commit
d6af0e66ae
|
|
@ -2,9 +2,9 @@
|
|||
|
||||
\section{Introduction}
|
||||
|
||||
The {\bf spatial searching} package implements
|
||||
exact and approximate distance browsing
|
||||
by providing implementations of algorithms supporting
|
||||
The spatial searching package implements exact and approximate
|
||||
distance browsing by providing implementations of algorithms
|
||||
supporting
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
|
|
@ -90,7 +90,7 @@ neighbor must not be smaller than $r/(1+\epsilon)$. Obviously, for
|
|||
$\epsilon=0$ we get the exact result, and the larger $\epsilon$ is,
|
||||
the less exact the result.
|
||||
|
||||
\subsection{Range searching}
|
||||
\subsection{Range Searching}
|
||||
|
||||
{\bf Exact range searching} and {\bf approximate range searching} is
|
||||
supported using exact or fuzzy $d$-dimensional objects enclosing a
|
||||
|
|
@ -218,7 +218,7 @@ coordinates.
|
|||
\ccIncludeExampleCode{../../examples/Spatial_searching/Fuzzy_range_query.C}
|
||||
|
||||
|
||||
\subsection{Example of Distance Browsing}
|
||||
\subsection{Example of Incremental Searching}
|
||||
|
||||
This example program illustrates distance browsing for $4$-dimensional
|
||||
points with a positive first coordinate using orthogonal priority
|
||||
|
|
@ -241,7 +241,7 @@ in this file as well.
|
|||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/User_defined_point_and_distance.C}
|
||||
|
||||
\section{Software design}
|
||||
\section{Software Design}
|
||||
|
||||
\begin{ccTexOnly}
|
||||
\begin{figure}[t]
|
||||
|
|
@ -331,7 +331,7 @@ as implemented by \ccc{CGAL::Plane_separator<NT>}.
|
|||
\ccc{CGAL::Sliding_Fair<SpatialPoint, PointContainer, SpatialSeparator>}.
|
||||
|
||||
\item
|
||||
\ccc{TreeTraits} denoting a traits class for the construction of a tree.
|
||||
\ccc{PointTraits} denoting a traits class for the construction of a tree.
|
||||
\ccc{CGAL::Kd_tree_traits_point< SpatialPoint, Splitter >} provides an implementation.
|
||||
|
||||
\item
|
||||
|
|
@ -360,18 +360,18 @@ a weighted Minkowski metric.
|
|||
|
||||
\item
|
||||
\ccc{SpatialTree} denoting a tree supporting spatial searching
|
||||
\ccc{CGAL::Kd_tree<TreeTraits>} provides an implementation of $k$-$d$ trees.
|
||||
\ccc{CGAL::Kd_tree<PointTraits>} provides an implementation of $k$-$d$ trees.
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Neighbor search}
|
||||
\subsection{Neighbor Search}
|
||||
|
||||
The four classes implementing neighbor searching algorithms are
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
\item
|
||||
The class \ccc{CGAL::General_standard_search<TreeTraits, Distance, QueryItem, SpatialTree>}
|
||||
The class \ccc{CGAL::K_neighbor_search<PointTraits, Distance, QueryItem, SpatialTree>}
|
||||
implementing the standard search strategy for general distances
|
||||
like the Manhattan distance for iso-rectangles.
|
||||
Requires no use of extended nodes in the $k$-$d$ tree and supports only $k$
|
||||
|
|
@ -379,21 +379,22 @@ neighbor searching for queries defined by points or spatial objects.
|
|||
|
||||
|
||||
\item
|
||||
The class \ccc{CGAL::General_priority_search<TreeTraits, GeneralDistance, QueryItem, SpatialTree>} implementing the priority search
|
||||
strategy for general distances
|
||||
like the Manhattan distance for iso-rectangles.
|
||||
Requires no use of extended nodes in the $k$-$d$ tree and supports incremental
|
||||
neighbor searching and distance browsing for queries defined by points or spatial objects.
|
||||
The class \ccc{CGAL::Incremental_neighbor_search<PointTraits,
|
||||
GeneralDistance, QueryItem, SpatialTree>} implementing the incremental
|
||||
search strategy for general distances like the Manhattan distance for
|
||||
iso-rectangles. Requires no use of extended nodes in the $k$-$d$ tree
|
||||
and supports incremental neighbor searching and distance browsing for
|
||||
queries defined by points or spatial objects.
|
||||
|
||||
\item
|
||||
The class \ccc{CGAL::Orthogonal_standard_search<TreeTraits, OrthogonalDistance, SpatialTree>} implementing the standard search strategy for
|
||||
orthogonal distances
|
||||
The class \ccc{CGAL::Orthogonal_k_neighbor_search<PointTraits, OrthogonalDistance, SpatialTree>}
|
||||
implementing the standard search strategy for orthogonal distances
|
||||
like a weighted Minkowski distance. Requires the use of extended nodes in the $k$-$d$ tree and supports
|
||||
only $k$ neighbor searching for point queries.
|
||||
|
||||
\item
|
||||
The class \ccc{Orthogonal_priority_search<TreeTraits, GeneralDistance, QueryItem, SpatialTree>} implementing the priority search strategy for general
|
||||
distances
|
||||
The class \ccc{Orthogonal_incremental_neighbor_search<PointTraits, GeneralDistance, QueryItem, SpatialTree>}
|
||||
implementing the priority search strategy for general distances
|
||||
like a weighted Minkowski distance. Requires the use of extended nodes in the $k$-$d$ tree and supports incremental
|
||||
neighbor searching and distance browsing for point queries.
|
||||
|
||||
|
|
@ -410,7 +411,7 @@ methods to compute bounding boxes
|
|||
of point sets and methods to split iso-rectangles.
|
||||
|
||||
\item
|
||||
The class \ccc{CGAL::Kd_tree_node<TreeTraits>} implementing $k$-$d$ tree nodes.
|
||||
The class \ccc{CGAL::Kd_tree_node<PointTraits>} implementing $k$-$d$ tree nodes.
|
||||
|
||||
\end{itemize}
|
||||
|
||||
|
|
@ -511,10 +512,9 @@ generate empty cells.
|
|||
\section{Backward compability with the Kd-trees package}
|
||||
\label{Spatial_searching:Backward_compability_Kd-trees}
|
||||
|
||||
In release 2.3 of CGAL
|
||||
$k$-$d$ trees have been implemented by the class \ccc{CGAL::Kdtree_d<TreeTraits>},
|
||||
that is parameterized with one of the
|
||||
traits classes
|
||||
In release 2.3 of \cgal\ $k$-$d$ trees have been implemented by the
|
||||
class \ccc{CGAL::Kdtree_d<PointTraits>}, that is parameterized with
|
||||
one of the traits classes
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
|
|
|
|||
|
|
@ -2,9 +2,9 @@
|
|||
|
||||
\section{Introduction}
|
||||
|
||||
The {\bf spatial searching} package implements
|
||||
exact and approximate distance browsing
|
||||
by providing implementations of algorithms supporting
|
||||
The spatial searching package implements exact and approximate
|
||||
distance browsing by providing implementations of algorithms
|
||||
supporting
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
|
|
@ -90,7 +90,7 @@ neighbor must not be smaller than $r/(1+\epsilon)$. Obviously, for
|
|||
$\epsilon=0$ we get the exact result, and the larger $\epsilon$ is,
|
||||
the less exact the result.
|
||||
|
||||
\subsection{Range searching}
|
||||
\subsection{Range Searching}
|
||||
|
||||
{\bf Exact range searching} and {\bf approximate range searching} is
|
||||
supported using exact or fuzzy $d$-dimensional objects enclosing a
|
||||
|
|
@ -218,7 +218,7 @@ coordinates.
|
|||
\ccIncludeExampleCode{../../examples/Spatial_searching/Fuzzy_range_query.C}
|
||||
|
||||
|
||||
\subsection{Example of Distance Browsing}
|
||||
\subsection{Example of Incremental Searching}
|
||||
|
||||
This example program illustrates distance browsing for $4$-dimensional
|
||||
points with a positive first coordinate using orthogonal priority
|
||||
|
|
@ -241,7 +241,7 @@ in this file as well.
|
|||
|
||||
\ccIncludeExampleCode{../../examples/Spatial_searching/User_defined_point_and_distance.C}
|
||||
|
||||
\section{Software design}
|
||||
\section{Software Design}
|
||||
|
||||
\begin{ccTexOnly}
|
||||
\begin{figure}[t]
|
||||
|
|
@ -331,7 +331,7 @@ as implemented by \ccc{CGAL::Plane_separator<NT>}.
|
|||
\ccc{CGAL::Sliding_Fair<SpatialPoint, PointContainer, SpatialSeparator>}.
|
||||
|
||||
\item
|
||||
\ccc{TreeTraits} denoting a traits class for the construction of a tree.
|
||||
\ccc{PointTraits} denoting a traits class for the construction of a tree.
|
||||
\ccc{CGAL::Kd_tree_traits_point< SpatialPoint, Splitter >} provides an implementation.
|
||||
|
||||
\item
|
||||
|
|
@ -360,18 +360,18 @@ a weighted Minkowski metric.
|
|||
|
||||
\item
|
||||
\ccc{SpatialTree} denoting a tree supporting spatial searching
|
||||
\ccc{CGAL::Kd_tree<TreeTraits>} provides an implementation of $k$-$d$ trees.
|
||||
\ccc{CGAL::Kd_tree<PointTraits>} provides an implementation of $k$-$d$ trees.
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Neighbor search}
|
||||
\subsection{Neighbor Search}
|
||||
|
||||
The four classes implementing neighbor searching algorithms are
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
\item
|
||||
The class \ccc{CGAL::General_standard_search<TreeTraits, Distance, QueryItem, SpatialTree>}
|
||||
The class \ccc{CGAL::K_neighbor_search<PointTraits, Distance, QueryItem, SpatialTree>}
|
||||
implementing the standard search strategy for general distances
|
||||
like the Manhattan distance for iso-rectangles.
|
||||
Requires no use of extended nodes in the $k$-$d$ tree and supports only $k$
|
||||
|
|
@ -379,21 +379,22 @@ neighbor searching for queries defined by points or spatial objects.
|
|||
|
||||
|
||||
\item
|
||||
The class \ccc{CGAL::General_priority_search<TreeTraits, GeneralDistance, QueryItem, SpatialTree>} implementing the priority search
|
||||
strategy for general distances
|
||||
like the Manhattan distance for iso-rectangles.
|
||||
Requires no use of extended nodes in the $k$-$d$ tree and supports incremental
|
||||
neighbor searching and distance browsing for queries defined by points or spatial objects.
|
||||
The class \ccc{CGAL::Incremental_neighbor_search<PointTraits,
|
||||
GeneralDistance, QueryItem, SpatialTree>} implementing the incremental
|
||||
search strategy for general distances like the Manhattan distance for
|
||||
iso-rectangles. Requires no use of extended nodes in the $k$-$d$ tree
|
||||
and supports incremental neighbor searching and distance browsing for
|
||||
queries defined by points or spatial objects.
|
||||
|
||||
\item
|
||||
The class \ccc{CGAL::Orthogonal_standard_search<TreeTraits, OrthogonalDistance, SpatialTree>} implementing the standard search strategy for
|
||||
orthogonal distances
|
||||
The class \ccc{CGAL::Orthogonal_k_neighbor_search<PointTraits, OrthogonalDistance, SpatialTree>}
|
||||
implementing the standard search strategy for orthogonal distances
|
||||
like a weighted Minkowski distance. Requires the use of extended nodes in the $k$-$d$ tree and supports
|
||||
only $k$ neighbor searching for point queries.
|
||||
|
||||
\item
|
||||
The class \ccc{Orthogonal_priority_search<TreeTraits, GeneralDistance, QueryItem, SpatialTree>} implementing the priority search strategy for general
|
||||
distances
|
||||
The class \ccc{Orthogonal_incremental_neighbor_search<PointTraits, GeneralDistance, QueryItem, SpatialTree>}
|
||||
implementing the priority search strategy for general distances
|
||||
like a weighted Minkowski distance. Requires the use of extended nodes in the $k$-$d$ tree and supports incremental
|
||||
neighbor searching and distance browsing for point queries.
|
||||
|
||||
|
|
@ -410,7 +411,7 @@ methods to compute bounding boxes
|
|||
of point sets and methods to split iso-rectangles.
|
||||
|
||||
\item
|
||||
The class \ccc{CGAL::Kd_tree_node<TreeTraits>} implementing $k$-$d$ tree nodes.
|
||||
The class \ccc{CGAL::Kd_tree_node<PointTraits>} implementing $k$-$d$ tree nodes.
|
||||
|
||||
\end{itemize}
|
||||
|
||||
|
|
@ -511,10 +512,9 @@ generate empty cells.
|
|||
\section{Backward compability with the Kd-trees package}
|
||||
\label{Spatial_searching:Backward_compability_Kd-trees}
|
||||
|
||||
In release 2.3 of CGAL
|
||||
$k$-$d$ trees have been implemented by the class \ccc{CGAL::Kdtree_d<TreeTraits>},
|
||||
that is parameterized with one of the
|
||||
traits classes
|
||||
In release 2.3 of \cgal\ $k$-$d$ trees have been implemented by the
|
||||
class \ccc{CGAL::Kdtree_d<PointTraits>}, that is parameterized with
|
||||
one of the traits classes
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue