mirror of https://github.com/CGAL/cgal
Merge pull request #3179 from MaelRL/T3-Fix_doc-GF
Triangulation_3: Minor doc fixes
This commit is contained in:
commit
fbb550905b
|
|
@ -162,7 +162,7 @@ Delaunay_triangulation_3 (InputIterator first, InputIterator last,
|
|||
/// @{
|
||||
|
||||
/*!
|
||||
Inserts point `p` in the triangulation and returns the corresponding
|
||||
Inserts the point `p` in the triangulation and returns the corresponding
|
||||
vertex. Similar to the insertion in a triangulation, but ensures in
|
||||
addition the empty sphere property of all the created faces.
|
||||
The optional argument `start` is used as a starting place for the search.
|
||||
|
|
@ -185,7 +185,7 @@ Vertex_handle insert(const Point & p, Vertex_handle hint,
|
|||
bool *could_lock_zone = NULL);
|
||||
|
||||
/*!
|
||||
Inserts point `p` in the triangulation and returns the corresponding
|
||||
Inserts the point `p` in the triangulation and returns the corresponding
|
||||
vertex. Similar to the above `insert()` function, but takes as additional
|
||||
parameter the return values of a previous location query. See description of
|
||||
`Triangulation_3::locate()`.
|
||||
|
|
@ -397,17 +397,14 @@ specifying where to start the search.
|
|||
\pre `c` is a cell of `dt`.
|
||||
|
||||
*/
|
||||
Vertex_handle nearest_vertex(Point p,
|
||||
Cell_handle c = Cell_handle());
|
||||
Vertex_handle nearest_vertex(const Point& p,
|
||||
Cell_handle c = Cell_handle());
|
||||
|
||||
/*!
|
||||
Returns the vertex of the cell `c` that is
|
||||
nearest to \f$ p\f$.
|
||||
|
||||
Returns the vertex of the cell `c` that is nearest to \f$ p\f$.
|
||||
*/
|
||||
Vertex_handle nearest_vertex_in_cell(Point p,
|
||||
Cell_handle c);
|
||||
|
||||
Vertex_handle nearest_vertex_in_cell(const Point& p,
|
||||
Cell_handle c);
|
||||
|
||||
/// @}
|
||||
|
||||
|
|
@ -447,9 +444,9 @@ Returns the pair composed of the resulting output iterators.
|
|||
template <class OutputIteratorBoundaryFacets,
|
||||
class OutputIteratorCells>
|
||||
std::pair<OutputIteratorBoundaryFacets, OutputIteratorCells>
|
||||
find_conflicts(Point p, Cell_handle c,
|
||||
OutputIteratorBoundaryFacets bfit,
|
||||
OutputIteratorCells cit, bool *could_lock_zone = NULL);
|
||||
find_conflicts(const Point& p, Cell_handle c,
|
||||
OutputIteratorBoundaryFacets bfit,
|
||||
OutputIteratorCells cit, bool *could_lock_zone = NULL);
|
||||
|
||||
/*!
|
||||
Same as the other `find_conflicts()` function, except that it also
|
||||
|
|
@ -479,24 +476,23 @@ Returns the `Triple` composed of the resulting output iterators.
|
|||
|
||||
*/
|
||||
template <class OutputIteratorBoundaryFacets,
|
||||
class OutputIteratorCells,
|
||||
class OutputIteratorInternalFacets>
|
||||
class OutputIteratorCells,
|
||||
class OutputIteratorInternalFacets>
|
||||
Triple<OutputIteratorBoundaryFacets,
|
||||
OutputIteratorCells,
|
||||
OutputIteratorInternalFacets>
|
||||
find_conflicts(Point p, Cell_handle c,
|
||||
OutputIteratorBoundaryFacets bfit,
|
||||
OutputIteratorCells cit,
|
||||
OutputIteratorInternalFacets ifit,
|
||||
bool *could_lock_zone = NULL);
|
||||
OutputIteratorCells,
|
||||
OutputIteratorInternalFacets>
|
||||
find_conflicts(const Point& p, Cell_handle c,
|
||||
OutputIteratorBoundaryFacets bfit,
|
||||
OutputIteratorCells cit,
|
||||
OutputIteratorInternalFacets ifit,
|
||||
bool *could_lock_zone = NULL);
|
||||
|
||||
/*!
|
||||
\deprecated This function is renamed `vertices_on_conflict_zone_boundary` since CGAL-3.8.
|
||||
*/
|
||||
template <class OutputIterator>
|
||||
OutputIterator
|
||||
vertices_in_conflict(Point p, Cell_handle c,
|
||||
OutputIterator res);
|
||||
vertices_in_conflict(const Point& p, Cell_handle c, OutputIterator res);
|
||||
|
||||
/*!
|
||||
Similar to `find_conflicts()`, but reports the vertices which are on the
|
||||
|
|
@ -507,9 +503,7 @@ Returns the resulting output iterator.
|
|||
*/
|
||||
template <class OutputIterator>
|
||||
OutputIterator
|
||||
vertices_on_conflict_zone_boundary(Point p, Cell_handle c,
|
||||
OutputIterator res);
|
||||
|
||||
vertices_on_conflict_zone_boundary(const Point& p, Cell_handle c, OutputIterator res);
|
||||
|
||||
/// @}
|
||||
|
||||
|
|
|
|||
|
|
@ -64,13 +64,12 @@ public:
|
|||
/// @{
|
||||
|
||||
/*!
|
||||
The type for points
|
||||
`p` of weighted points \f$ {p}^{(w)}=(p,w_p)\f$
|
||||
The type for points `p` of weighted points \f$ {p}^{(w)}=(p,w_p)\f$
|
||||
*/
|
||||
typedef Traits::Point_3 Bare_point;
|
||||
|
||||
/*!
|
||||
|
||||
The type for weighted points
|
||||
*/
|
||||
typedef Traits::Weighted_point_3 Weighted_point;
|
||||
|
||||
|
|
@ -126,7 +125,7 @@ The following methods, which already exist in `Triangulation_3`, are overloaded
|
|||
/// @{
|
||||
|
||||
/*!
|
||||
Inserts weighted point `p` in the triangulation. The optional
|
||||
Inserts the weighted point `p` in the triangulation. The optional
|
||||
argument `start` is used as a starting place for the search.
|
||||
|
||||
If this insertion creates a vertex, this vertex is returned.
|
||||
|
|
@ -160,7 +159,7 @@ Same as above but uses `hint` as a starting place for the search.
|
|||
Vertex_handle insert(const Weighted_point & p, Vertex_handle hint, bool *could_lock_zone = NULL);
|
||||
|
||||
/*!
|
||||
Inserts weighted point `p` in the triangulation and returns the corresponding
|
||||
Inserts the weighted point `p` in the triangulation and returns the corresponding
|
||||
vertex. Similar to the above `insert()` function, but takes as additional
|
||||
parameter the return values of a previous location query. See description of
|
||||
`Triangulation_3::locate()`.
|
||||
|
|
@ -229,16 +228,18 @@ of `p` and is stored in the new cell which contains it.
|
|||
\pre `rt`.`dimension()` \f$ \geq2\f$, the set of cells (resp. facets in dimension 2) is connected, not empty, its boundary is connected, and `p` lies inside the hole, which is star-shaped wrt `p`.
|
||||
*/
|
||||
template <class CellIt>
|
||||
Vertex_handle insert_in_hole(Weighted_point p, CellIt cell_begin, CellIt cell_end,
|
||||
Cell_handle begin, int i);
|
||||
Vertex_handle insert_in_hole(const Weighted_point& p,
|
||||
CellIt cell_begin, CellIt cell_end,
|
||||
Cell_handle begin, int i);
|
||||
|
||||
/*!
|
||||
Same as above, except that `newv` will be used as the new vertex, which
|
||||
must have been allocated previously with, e.g.\ `create_vertex`.
|
||||
*/
|
||||
template <class CellIt>
|
||||
Vertex_handle insert_in_hole(Weighted_point p, CellIt cell_begin, CellIt cell_end,
|
||||
Cell_handle begin, int i, Vertex_handle newv);
|
||||
Vertex_handle insert_in_hole(const Weighted_point& p,
|
||||
CellIt cell_begin, CellIt cell_end,
|
||||
Cell_handle begin, int i, Vertex_handle newv);
|
||||
|
||||
/// @}
|
||||
|
||||
|
|
@ -406,7 +407,7 @@ with respect to the power distance. This means that the power
|
|||
of the query point `p` with respect to the weighted point in
|
||||
the returned vertex is smaller than the power of `p`
|
||||
with respect to the weighted point
|
||||
in any other vertex. Ties are broken arbitrarily.
|
||||
for any other vertex. Ties are broken arbitrarily.
|
||||
The default constructed
|
||||
handle is returned if the triangulation is empty.
|
||||
The optional argument `c` is a hint
|
||||
|
|
@ -414,8 +415,8 @@ specifying where to start the search.
|
|||
\pre `c` is a cell of `rt`.
|
||||
|
||||
*/
|
||||
Vertex_handle nearest_power_vertex(Weighted_point p,
|
||||
Cell_handle c = Cell_handle());
|
||||
Vertex_handle nearest_power_vertex(const Bare_point& p,
|
||||
Cell_handle c = Cell_handle());
|
||||
|
||||
/*!
|
||||
Returns the vertex of the cell `c`
|
||||
|
|
@ -423,8 +424,8 @@ that is nearest to \f$ p\f$
|
|||
with respect to the power distance.
|
||||
|
||||
*/
|
||||
Vertex_handle nearest_power_vertex_in_cell(Weighted_point p,
|
||||
Cell_handle c);
|
||||
Vertex_handle nearest_power_vertex_in_cell(const Bare_point& p,
|
||||
Cell_handle c);
|
||||
|
||||
|
||||
/// @}
|
||||
|
|
@ -485,8 +486,7 @@ bool *the_facet_is_in_its_cz = NULL);
|
|||
*/
|
||||
template <class OutputIterator>
|
||||
OutputIterator
|
||||
vertices_in_conflict(Weighted_point p, Cell_handle c,
|
||||
OutputIterator res);
|
||||
vertices_in_conflict(const Weighted_point& p, Cell_handle c, OutputIterator res);
|
||||
|
||||
/*!
|
||||
Similar to `find_conflicts()`, but reports the vertices which are on the
|
||||
|
|
@ -497,8 +497,7 @@ Returns the resulting output iterator.
|
|||
*/
|
||||
template <class OutputIterator>
|
||||
OutputIterator
|
||||
vertices_on_conflict_zone_boundary(Weighted_point p, Cell_handle c,
|
||||
OutputIterator res);
|
||||
vertices_on_conflict_zone_boundary(const Weighted_point& p, Cell_handle c, OutputIterator res);
|
||||
|
||||
/*!
|
||||
Similar to `find_conflicts()`, but reports the vertices which are in
|
||||
|
|
@ -511,7 +510,7 @@ Returns the resulting output iterator.
|
|||
*/
|
||||
template <class OutputIterator>
|
||||
OutputIterator
|
||||
vertices_inside_conflict_zone(Weighted_point p, Cell_handle c,
|
||||
vertices_inside_conflict_zone(const Weighted_point& p, Cell_handle c,
|
||||
OutputIterator res);
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -862,7 +862,7 @@ void flip_flippable(Cell_handle c, int i);
|
|||
/// @{
|
||||
|
||||
/*!
|
||||
Inserts point `p` in the triangulation and returns the corresponding
|
||||
Inserts the point `p` in the triangulation and returns the corresponding
|
||||
vertex.
|
||||
|
||||
If point `p` coincides with an already existing vertex, this
|
||||
|
|
@ -896,7 +896,7 @@ Same as above but uses `hint` as the starting place for the search.
|
|||
Vertex_handle insert(const Point & p, Vertex_handle hint);
|
||||
|
||||
/*!
|
||||
Inserts point `p` in the triangulation and returns the corresponding
|
||||
Inserts the point `p` in the triangulation and returns the corresponding
|
||||
vertex. Similar to the above `insert()` function, but takes as additional
|
||||
parameter the return values of a previous location query. See description of
|
||||
<I>locate()</I> above.
|
||||
|
|
@ -926,14 +926,14 @@ valid triangulation when they are applied on a valid triangulation.
|
|||
|
||||
// @{
|
||||
/*!
|
||||
Inserts point `p` in cell `c`. Cell `c` is split into 4
|
||||
Inserts the point `p` in the cell `c`. The cell `c` is split into 4
|
||||
tetrahedra.
|
||||
\pre `t.dimension() == 3` and `p` lies strictly inside cell `c`.
|
||||
*/
|
||||
Vertex_handle insert_in_cell(const Point & p, Cell_handle c);
|
||||
|
||||
/*!
|
||||
Inserts point `p` in facet `f`. In dimension 3, the 2
|
||||
Inserts the point `p` in the facet `f`. In dimension 3, the 2
|
||||
neighboring cells are split into 3 tetrahedra; in dimension 2, the facet
|
||||
is split into 3 triangles.
|
||||
\pre `t.dimension()` \f$ \geq2\f$ and `p` lies strictly inside face `f`.
|
||||
|
|
@ -941,14 +941,14 @@ is split into 3 triangles.
|
|||
Vertex_handle insert_in_facet(const Point & p, const Facet & f);
|
||||
|
||||
/*!
|
||||
As above, insertion in facet `(c,i)`.
|
||||
As above, insertion in the facet `(c,i)`.
|
||||
\pre As above and \f$ i \in\{0,1,2,3\}\f$ in dimension 3, \f$ i = 3\f$ in dimension 2.
|
||||
*/
|
||||
Vertex_handle insert_in_facet(const Point & p,
|
||||
Cell_handle c, int i);
|
||||
|
||||
/*!
|
||||
Inserts `p` in edge `e`. In dimension 3,
|
||||
Inserts `p` in the edge `e`. In dimension 3,
|
||||
all the cells having this edge are split into 2 tetrahedra; in
|
||||
dimension 2, the 2 neighboring facets are split into 2 triangles; in
|
||||
dimension 1, the edge is split into 2 edges.
|
||||
|
|
@ -957,10 +957,10 @@ dimension 1, the edge is split into 2 edges.
|
|||
Vertex_handle insert_in_edge(const Point & p, const Edge & e);
|
||||
|
||||
/*!
|
||||
As above, inserts `p` in edge \f$ (i, j)\f$ of `c`.
|
||||
As above, inserts `p` in the edge \f$ (i, j)\f$ of `c`.
|
||||
\pre As above and \f$ i\neq j\f$. Moreover \f$ i,j \in\{0,1,2,3\}\f$ in dimension 3, \f$ i,j \in\{0,1,2\}\f$ in dimension 2, \f$ i,j \in\{0,1\}\f$ in dimension 1.
|
||||
*/
|
||||
Vertex_handle insert_in_edge(Point p, Cell_handle c, int i, int j);
|
||||
Vertex_handle insert_in_edge(const Point& p, Cell_handle c, int i, int j);
|
||||
|
||||
/*!
|
||||
The cell `c` must be an infinite cell containing `p`.
|
||||
|
|
@ -1011,16 +1011,16 @@ This operation is equivalent to calling
|
|||
\pre `t.dimension()` \f$ \geq2\f$, the set of cells (resp. facets in dimension 2) is connected, its boundary is connected, and `p` lies inside the hole, which is star-shaped wrt `p`.
|
||||
*/
|
||||
template <class CellIt>
|
||||
Vertex_handle insert_in_hole(Point p, CellIt cell_begin, CellIt cell_end,
|
||||
Cell_handle begin, int i);
|
||||
Vertex_handle insert_in_hole(const Point& p, CellIt cell_begin, CellIt cell_end,
|
||||
Cell_handle begin, int i);
|
||||
|
||||
/*!
|
||||
Same as above, except that `newv` will be used as the new vertex, which
|
||||
must have been allocated previously with e.g.\ `create_vertex`.
|
||||
*/
|
||||
template <class CellIt>
|
||||
Vertex_handle insert_in_hole(Point p, CellIt cell_begin, CellIt cell_end,
|
||||
Cell_handle begin, int i, Vertex_handle newv);
|
||||
Vertex_handle insert_in_hole(const Point& p, CellIt cell_begin, CellIt cell_end,
|
||||
Cell_handle begin, int i, Vertex_handle newv);
|
||||
|
||||
/// @}
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue