Merge pull request #3179 from MaelRL/T3-Fix_doc-GF

Triangulation_3: Minor doc fixes
This commit is contained in:
Laurent Rineau 2018-06-20 17:21:06 +02:00
commit fbb550905b
3 changed files with 51 additions and 58 deletions

View File

@ -162,7 +162,7 @@ Delaunay_triangulation_3 (InputIterator first, InputIterator last,
/// @{
/*!
Inserts point `p` in the triangulation and returns the corresponding
Inserts the point `p` in the triangulation and returns the corresponding
vertex. Similar to the insertion in a triangulation, but ensures in
addition the empty sphere property of all the created faces.
The optional argument `start` is used as a starting place for the search.
@ -185,7 +185,7 @@ Vertex_handle insert(const Point & p, Vertex_handle hint,
bool *could_lock_zone = NULL);
/*!
Inserts point `p` in the triangulation and returns the corresponding
Inserts the point `p` in the triangulation and returns the corresponding
vertex. Similar to the above `insert()` function, but takes as additional
parameter the return values of a previous location query. See description of
`Triangulation_3::locate()`.
@ -397,17 +397,14 @@ specifying where to start the search.
\pre `c` is a cell of `dt`.
*/
Vertex_handle nearest_vertex(Point p,
Cell_handle c = Cell_handle());
Vertex_handle nearest_vertex(const Point& p,
Cell_handle c = Cell_handle());
/*!
Returns the vertex of the cell `c` that is
nearest to \f$ p\f$.
Returns the vertex of the cell `c` that is nearest to \f$ p\f$.
*/
Vertex_handle nearest_vertex_in_cell(Point p,
Cell_handle c);
Vertex_handle nearest_vertex_in_cell(const Point& p,
Cell_handle c);
/// @}
@ -447,9 +444,9 @@ Returns the pair composed of the resulting output iterators.
template <class OutputIteratorBoundaryFacets,
class OutputIteratorCells>
std::pair<OutputIteratorBoundaryFacets, OutputIteratorCells>
find_conflicts(Point p, Cell_handle c,
OutputIteratorBoundaryFacets bfit,
OutputIteratorCells cit, bool *could_lock_zone = NULL);
find_conflicts(const Point& p, Cell_handle c,
OutputIteratorBoundaryFacets bfit,
OutputIteratorCells cit, bool *could_lock_zone = NULL);
/*!
Same as the other `find_conflicts()` function, except that it also
@ -479,24 +476,23 @@ Returns the `Triple` composed of the resulting output iterators.
*/
template <class OutputIteratorBoundaryFacets,
class OutputIteratorCells,
class OutputIteratorInternalFacets>
class OutputIteratorCells,
class OutputIteratorInternalFacets>
Triple<OutputIteratorBoundaryFacets,
OutputIteratorCells,
OutputIteratorInternalFacets>
find_conflicts(Point p, Cell_handle c,
OutputIteratorBoundaryFacets bfit,
OutputIteratorCells cit,
OutputIteratorInternalFacets ifit,
bool *could_lock_zone = NULL);
OutputIteratorCells,
OutputIteratorInternalFacets>
find_conflicts(const Point& p, Cell_handle c,
OutputIteratorBoundaryFacets bfit,
OutputIteratorCells cit,
OutputIteratorInternalFacets ifit,
bool *could_lock_zone = NULL);
/*!
\deprecated This function is renamed `vertices_on_conflict_zone_boundary` since CGAL-3.8.
*/
template <class OutputIterator>
OutputIterator
vertices_in_conflict(Point p, Cell_handle c,
OutputIterator res);
vertices_in_conflict(const Point& p, Cell_handle c, OutputIterator res);
/*!
Similar to `find_conflicts()`, but reports the vertices which are on the
@ -507,9 +503,7 @@ Returns the resulting output iterator.
*/
template <class OutputIterator>
OutputIterator
vertices_on_conflict_zone_boundary(Point p, Cell_handle c,
OutputIterator res);
vertices_on_conflict_zone_boundary(const Point& p, Cell_handle c, OutputIterator res);
/// @}

View File

@ -64,13 +64,12 @@ public:
/// @{
/*!
The type for points
`p` of weighted points \f$ {p}^{(w)}=(p,w_p)\f$
The type for points `p` of weighted points \f$ {p}^{(w)}=(p,w_p)\f$
*/
typedef Traits::Point_3 Bare_point;
/*!
The type for weighted points
*/
typedef Traits::Weighted_point_3 Weighted_point;
@ -126,7 +125,7 @@ The following methods, which already exist in `Triangulation_3`, are overloaded
/// @{
/*!
Inserts weighted point `p` in the triangulation. The optional
Inserts the weighted point `p` in the triangulation. The optional
argument `start` is used as a starting place for the search.
If this insertion creates a vertex, this vertex is returned.
@ -160,7 +159,7 @@ Same as above but uses `hint` as a starting place for the search.
Vertex_handle insert(const Weighted_point & p, Vertex_handle hint, bool *could_lock_zone = NULL);
/*!
Inserts weighted point `p` in the triangulation and returns the corresponding
Inserts the weighted point `p` in the triangulation and returns the corresponding
vertex. Similar to the above `insert()` function, but takes as additional
parameter the return values of a previous location query. See description of
`Triangulation_3::locate()`.
@ -229,16 +228,18 @@ of `p` and is stored in the new cell which contains it.
\pre `rt`.`dimension()` \f$ \geq2\f$, the set of cells (resp. facets in dimension 2) is connected, not empty, its boundary is connected, and `p` lies inside the hole, which is star-shaped wrt `p`.
*/
template <class CellIt>
Vertex_handle insert_in_hole(Weighted_point p, CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i);
Vertex_handle insert_in_hole(const Weighted_point& p,
CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i);
/*!
Same as above, except that `newv` will be used as the new vertex, which
must have been allocated previously with, e.g.\ `create_vertex`.
*/
template <class CellIt>
Vertex_handle insert_in_hole(Weighted_point p, CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i, Vertex_handle newv);
Vertex_handle insert_in_hole(const Weighted_point& p,
CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i, Vertex_handle newv);
/// @}
@ -406,7 +407,7 @@ with respect to the power distance. This means that the power
of the query point `p` with respect to the weighted point in
the returned vertex is smaller than the power of `p`
with respect to the weighted point
in any other vertex. Ties are broken arbitrarily.
for any other vertex. Ties are broken arbitrarily.
The default constructed
handle is returned if the triangulation is empty.
The optional argument `c` is a hint
@ -414,8 +415,8 @@ specifying where to start the search.
\pre `c` is a cell of `rt`.
*/
Vertex_handle nearest_power_vertex(Weighted_point p,
Cell_handle c = Cell_handle());
Vertex_handle nearest_power_vertex(const Bare_point& p,
Cell_handle c = Cell_handle());
/*!
Returns the vertex of the cell `c`
@ -423,8 +424,8 @@ that is nearest to \f$ p\f$
with respect to the power distance.
*/
Vertex_handle nearest_power_vertex_in_cell(Weighted_point p,
Cell_handle c);
Vertex_handle nearest_power_vertex_in_cell(const Bare_point& p,
Cell_handle c);
/// @}
@ -485,8 +486,7 @@ bool *the_facet_is_in_its_cz = NULL);
*/
template <class OutputIterator>
OutputIterator
vertices_in_conflict(Weighted_point p, Cell_handle c,
OutputIterator res);
vertices_in_conflict(const Weighted_point& p, Cell_handle c, OutputIterator res);
/*!
Similar to `find_conflicts()`, but reports the vertices which are on the
@ -497,8 +497,7 @@ Returns the resulting output iterator.
*/
template <class OutputIterator>
OutputIterator
vertices_on_conflict_zone_boundary(Weighted_point p, Cell_handle c,
OutputIterator res);
vertices_on_conflict_zone_boundary(const Weighted_point& p, Cell_handle c, OutputIterator res);
/*!
Similar to `find_conflicts()`, but reports the vertices which are in
@ -511,7 +510,7 @@ Returns the resulting output iterator.
*/
template <class OutputIterator>
OutputIterator
vertices_inside_conflict_zone(Weighted_point p, Cell_handle c,
vertices_inside_conflict_zone(const Weighted_point& p, Cell_handle c,
OutputIterator res);

View File

@ -862,7 +862,7 @@ void flip_flippable(Cell_handle c, int i);
/// @{
/*!
Inserts point `p` in the triangulation and returns the corresponding
Inserts the point `p` in the triangulation and returns the corresponding
vertex.
If point `p` coincides with an already existing vertex, this
@ -896,7 +896,7 @@ Same as above but uses `hint` as the starting place for the search.
Vertex_handle insert(const Point & p, Vertex_handle hint);
/*!
Inserts point `p` in the triangulation and returns the corresponding
Inserts the point `p` in the triangulation and returns the corresponding
vertex. Similar to the above `insert()` function, but takes as additional
parameter the return values of a previous location query. See description of
<I>locate()</I> above.
@ -926,14 +926,14 @@ valid triangulation when they are applied on a valid triangulation.
// @{
/*!
Inserts point `p` in cell `c`. Cell `c` is split into 4
Inserts the point `p` in the cell `c`. The cell `c` is split into 4
tetrahedra.
\pre `t.dimension() == 3` and `p` lies strictly inside cell `c`.
*/
Vertex_handle insert_in_cell(const Point & p, Cell_handle c);
/*!
Inserts point `p` in facet `f`. In dimension 3, the 2
Inserts the point `p` in the facet `f`. In dimension 3, the 2
neighboring cells are split into 3 tetrahedra; in dimension 2, the facet
is split into 3 triangles.
\pre `t.dimension()` \f$ \geq2\f$ and `p` lies strictly inside face `f`.
@ -941,14 +941,14 @@ is split into 3 triangles.
Vertex_handle insert_in_facet(const Point & p, const Facet & f);
/*!
As above, insertion in facet `(c,i)`.
As above, insertion in the facet `(c,i)`.
\pre As above and \f$ i \in\{0,1,2,3\}\f$ in dimension 3, \f$ i = 3\f$ in dimension 2.
*/
Vertex_handle insert_in_facet(const Point & p,
Cell_handle c, int i);
/*!
Inserts `p` in edge `e`. In dimension 3,
Inserts `p` in the edge `e`. In dimension 3,
all the cells having this edge are split into 2 tetrahedra; in
dimension 2, the 2 neighboring facets are split into 2 triangles; in
dimension 1, the edge is split into 2 edges.
@ -957,10 +957,10 @@ dimension 1, the edge is split into 2 edges.
Vertex_handle insert_in_edge(const Point & p, const Edge & e);
/*!
As above, inserts `p` in edge \f$ (i, j)\f$ of `c`.
As above, inserts `p` in the edge \f$ (i, j)\f$ of `c`.
\pre As above and \f$ i\neq j\f$. Moreover \f$ i,j \in\{0,1,2,3\}\f$ in dimension 3, \f$ i,j \in\{0,1,2\}\f$ in dimension 2, \f$ i,j \in\{0,1\}\f$ in dimension 1.
*/
Vertex_handle insert_in_edge(Point p, Cell_handle c, int i, int j);
Vertex_handle insert_in_edge(const Point& p, Cell_handle c, int i, int j);
/*!
The cell `c` must be an infinite cell containing `p`.
@ -1011,16 +1011,16 @@ This operation is equivalent to calling
\pre `t.dimension()` \f$ \geq2\f$, the set of cells (resp. facets in dimension 2) is connected, its boundary is connected, and `p` lies inside the hole, which is star-shaped wrt `p`.
*/
template <class CellIt>
Vertex_handle insert_in_hole(Point p, CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i);
Vertex_handle insert_in_hole(const Point& p, CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i);
/*!
Same as above, except that `newv` will be used as the new vertex, which
must have been allocated previously with e.g.\ `create_vertex`.
*/
template <class CellIt>
Vertex_handle insert_in_hole(Point p, CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i, Vertex_handle newv);
Vertex_handle insert_in_hole(const Point& p, CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i, Vertex_handle newv);
/// @}