mirror of https://github.com/CGAL/cgal
34 lines
1.2 KiB
TeX
34 lines
1.2 KiB
TeX
\begin{ccRefConcept}{ImplicitInteroperable}
|
|
\ccDefinition
|
|
|
|
Two types \ccc{A} and \ccc{B} are a model of the concept
|
|
\ccc{ImplicitInteroperable}, if there is a superior type, such that
|
|
binary arithmetic operations involving \ccc{A} and \ccc{B} result in
|
|
this type. This type is \ccc{Coercion_traits<A,B>::Type}.
|
|
|
|
The type \ccc{Coercion_traits<A,B>::Type} is required to be
|
|
implicit constructible from \ccc{A} and \ccc{B}.
|
|
|
|
%From this it follows that all binary functors (and their global functions)
|
|
%provided by \ccc{Algebraic_structure_traits< Coercion_traits<A,B> :: Type> }
|
|
%and \ccc{Real_embeddable_traits< Coercion_traits<A,B> :: Type> } also
|
|
%support \ccc{A} and \ccc{B} as argument type. However, they may also
|
|
%provide a more efficient specialization for \ccc{A}, \ccc{B} or both.
|
|
%\\
|
|
|
|
In this case \ccc{Coercion_traits<A,B>::Are_implicit_interoperable}
|
|
is \ccc{Tag_true}.
|
|
|
|
%Note that \ccc{Coercion_traits<A,B>::Type} may be equal to \ccc{A} or \ccc{B}.\\
|
|
|
|
\ccRefines
|
|
\ccc{ExplicitInteroperable}
|
|
|
|
\ccSeeAlso
|
|
\ccRefIdfierPage{CGAL::Coercion_traits<A,B>}\\
|
|
\ccRefConceptPage{ExplicitInteroperable}\\
|
|
\ccRefConceptPage{AlgebraicStructureTraits}\\
|
|
\ccRefConceptPage{RealEmbeddableTraits}\\
|
|
|
|
\end{ccRefConcept}
|