cgal/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/ImplicitInteroperable.tex

34 lines
1.2 KiB
TeX

\begin{ccRefConcept}{ImplicitInteroperable}
\ccDefinition
Two types \ccc{A} and \ccc{B} are a model of the concept
\ccc{ImplicitInteroperable}, if there is a superior type, such that
binary arithmetic operations involving \ccc{A} and \ccc{B} result in
this type. This type is \ccc{Coercion_traits<A,B>::Type}.
The type \ccc{Coercion_traits<A,B>::Type} is required to be
implicit constructible from \ccc{A} and \ccc{B}.
%From this it follows that all binary functors (and their global functions)
%provided by \ccc{Algebraic_structure_traits< Coercion_traits<A,B> :: Type> }
%and \ccc{Real_embeddable_traits< Coercion_traits<A,B> :: Type> } also
%support \ccc{A} and \ccc{B} as argument type. However, they may also
%provide a more efficient specialization for \ccc{A}, \ccc{B} or both.
%\\
In this case \ccc{Coercion_traits<A,B>::Are_implicit_interoperable}
is \ccc{Tag_true}.
%Note that \ccc{Coercion_traits<A,B>::Type} may be equal to \ccc{A} or \ccc{B}.\\
\ccRefines
\ccc{ExplicitInteroperable}
\ccSeeAlso
\ccRefIdfierPage{CGAL::Coercion_traits<A,B>}\\
\ccRefConceptPage{ExplicitInteroperable}\\
\ccRefConceptPage{AlgebraicStructureTraits}\\
\ccRefConceptPage{RealEmbeddableTraits}\\
\end{ccRefConcept}