cgal/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/integral_division.tex

32 lines
1.1 KiB
TeX

\begin{ccRefFunction}{integral_division}
\ccDefinition
The function \ccRefName\ (a.k.a. exact division or division without remainder)
maps ring elements $(x,y)$ to ring element $z$ such that $x = yz$ if such a $z$
exists (i.e. if $x$ is divisible by $y$). Otherwise the effect of invoking
this operation is undefined. Since the ring represented is an integral domain,
$z$ is uniquely defined if it exists.
In case the argument types \ccc{NT1} and \ccc{NT2} differ,
the \ccc{result_type} is determined via \ccc{Coercion_traits}.\\
Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
are a model of \ccc{ExplicitInteroperable}. \\
The actual \ccRefName\ is performed with the semantic of that type.
The function is guaranteed to be well defined in case \ccc{result_type}
is a model of the \ccc{IntegralDomain} concept.
\ccInclude{CGAL/number_utils.h}
\ccFunction{template <class NT1, class NT2> result_type
integral_division(const NT1& x, const NT2& y);}{}
\ccSeeAlso
\ccRefConceptPage{IntegralDomain}\\
\ccRefConceptPage{AlgebraicStructureTraits::IntegralDivision}\\
\end{ccRefFunction}