mirror of https://github.com/CGAL/cgal
32 lines
1.1 KiB
TeX
32 lines
1.1 KiB
TeX
\begin{ccRefFunction}{integral_division}
|
|
|
|
\ccDefinition
|
|
|
|
The function \ccRefName\ (a.k.a. exact division or division without remainder)
|
|
maps ring elements $(x,y)$ to ring element $z$ such that $x = yz$ if such a $z$
|
|
exists (i.e. if $x$ is divisible by $y$). Otherwise the effect of invoking
|
|
this operation is undefined. Since the ring represented is an integral domain,
|
|
$z$ is uniquely defined if it exists.
|
|
|
|
In case the argument types \ccc{NT1} and \ccc{NT2} differ,
|
|
the \ccc{result_type} is determined via \ccc{Coercion_traits}.\\
|
|
Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
|
|
are a model of \ccc{ExplicitInteroperable}. \\
|
|
The actual \ccRefName\ is performed with the semantic of that type.
|
|
|
|
The function is guaranteed to be well defined in case \ccc{result_type}
|
|
is a model of the \ccc{IntegralDomain} concept.
|
|
|
|
\ccInclude{CGAL/number_utils.h}
|
|
|
|
\ccFunction{template <class NT1, class NT2> result_type
|
|
integral_division(const NT1& x, const NT2& y);}{}
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefConceptPage{IntegralDomain}\\
|
|
\ccRefConceptPage{AlgebraicStructureTraits::IntegralDivision}\\
|
|
|
|
\end{ccRefFunction}
|
|
|